Blom's estimators of the two parameters of the Weibull distribution

Description

Computes the Blom's estimators of the shape and scale parameters of the Weibull distribution from an i.i.d sample x. It also gives the sample \check{y} after using the logarithmic transformation (\check{y}=(\check{shape})\ln(x/\check{scale}), where \check{shape} and \check{scale} are the estimated shape and scale parameters).

Usage

1

Arguments

x

a numeric vector of data values.

Value

A list containing the following elements:

eta

the Blom's estimator of the scale parameter of the Weibull distribution (\check{scale}).

beta

the Blom's estimator of the shape parameter of the Weibull distribution (\check{shape}).

y

the pseudo-observations \check{y} after using the logarithmic transformation and the Blom's estimators.

Author(s)

Meryam KRIT

References

Blom G., Statistical Estimates and Transformed Beta-variables. New York: Wiley, 1958.

Examples

1
2
3
4
5
6
7
x <- rweibull(50,2,3)

#Value of the Blom's estimator of the scale parameter
BLOMEst(x)$eta

#Value of the Blom's estimator of the shape parameter
BLOMEst(x)$beta