Description Usage Arguments Author(s) References See Also Examples
View source: R/effect.stars.vglm.R
Plots effect stars for vglm-objects. In particular, the method
works for multinomial logit models created by family multinomial and for
models with ordinal response like sratio, cratio,
cumulative or acat.
For more details on plotting effect stars see effectstars.
1 2 3 | ## S3 method for class 'vglm'
effectstars(x, p.values = FALSE, symmetric = TRUE,
plot.parallel = FALSE, ...)
|
x |
A |
p.values |
Should the p-values of the single coefficients be included in the labels? Default
is |
symmetric |
Should the parameters be transformed to parameters with symmetric (sum-to-zero)
side constraints instead of using reference levels. Default is |
plot.parallel |
Should parallel parameters (equal over all response categories) be
represented by effect stars. Default is |
... |
further arguments for generic function |
Gunther Schauberger
gunther.schauberger@tum.de
https://www.sg.tum.de/epidemiologie/team/schauberger/
Tutz, G. and Schauberger, G. (2013): Visualization of Categorical Response Models -
from Data Glyphs to Parameter Glyphs, Journal of Computational and Graphical Statistics 22(1), 156–177.
Gerhard Tutz (2012): Regression for Categorical Data, Cambridge University Press
effectstars effectstars.DIFlasso
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | ## Not run:
############################################
### Examples for multinomial logit model
############################################
### German election data
data(election)
library(VGAM)
m_elect <- vglm(Partychoice ~ Gender + West + Age + Union + Highschool + Unemployment
+ Pol.Interest + Democracy + Religion, family = multinomial(), data = election)
effectstars(m_elect)
# include p.values
effectstars(m_elect, p.values = TRUE)
### German election data with category-specific covariates
data(election)
election[,13:16] <- election[,13:16] - election[,12]
election[,18:21] <- election[,18:21] - election[,17]
election[,23:26] <- election[,23:26] - election[,22]
election[,28:31] <- election[,28:31] - election[,27]
election$Social <- election$Social_SPD
election$Immigration <- election$Immigration_SPD
election$Nuclear <- election$Nuclear_SPD
election$Left_Right <- election$Left_Right_SPD
m.all <- vglm(Partychoice ~ Social + Immigration + Nuclear + Left_Right + Age +
Religion + Democracy + Pol.Interest + Unemployment + Highschool + Union + West +
Gender, data = election,
family = multinomial(parallel = TRUE~-1 + Social + Immigration +
Nuclear + Left_Right, refLevel = 1),
xij = list(Social ~ Social_SPD + Social_FDP + Social_Greens + Social_Left,
Immigration ~ Immigration_SPD + Immigration_FDP +
Immigration_Greens + Immigration_Left,
Nuclear ~ Nuclear_SPD + Nuclear_FDP +
Nuclear_Greens + Nuclear_Left,
Left_Right ~ Left_Right_SPD + Left_Right_FDP +
Left_Right_Greens + Left_Right_Left),
form2 = ~Social + Immigration + Nuclear + Left_Right + Age +
Religion + Democracy + Pol.Interest + Unemployment + Highschool + Union + West +
Gender + Social_SPD + Social_FDP + Social_Greens + Social_Left +
Immigration_SPD + Immigration_FDP + Immigration_Greens + Immigration_Left +
Nuclear_SPD + Nuclear_FDP + Nuclear_Greens + Nuclear_Left +
Left_Right_SPD + Left_Right_FDP + Left_Right_Greens + Left_Right_Left
)
effectstars(m.all, symmetric = FALSE, p.values = TRUE)
summary(m.all)
### Chilean plebiscite data
data(plebiscite)
m_chile <- vglm(Vote ~ ., family = multinomial(), data = plebiscite)
effectstars(m_chile)
# choose fixed circle sizes and use reference category instead of symmetric side constraints
effectstars(m_chile, symmetric = FALSE, fixed = TRUE)
############################################
### Examples for ordinal data
############################################
### Munich insolvency data
data(insolvency)
insolvency$Age <- scale(insolvency$Age)
my_formula <- Insolvency ~ Age + Gender
m_acat <- vglm(my_formula, data = insolvency,family = acat())
m_cratio <- vglm(my_formula, data = insolvency,family = cratio())
m_sratio <- vglm(my_formula, data = insolvency,family = sratio())
m_cumulative <- vglm(my_formula, data = insolvency,family = cumulative())
summary(m_acat)
effectstars(m_acat, p.values = TRUE)
summary(m_cratio)
effectstars(m_cratio, p.values = TRUE)
summary(m_sratio)
effectstars(m_sratio, p.values = TRUE)
summary(m_cumulative)
effectstars(m_cumulative, p.values = TRUE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.