Nothing
#' Dataset: Oat data
#'
#' Data set with oat genotypes and industry variables.
#'
#' @format A data.frame with 54 observations and 6 variables:
#' \describe{
#' \item{GEN}{14 white oat genotypes.}
#' \item{BLOCO}{Experiment blocks.}
#' \item{NG2M}{Number of grains larger than 2 mm.}
#' \item{MG}{Grain mass}
#' \item{MC}{Caryopsis dough}
#' \item{RG}{Grain yield (in kg per ha)}
#' }
#' @source Real field data for use.
"aveia"
#' Data: Climate Data Set for Predictions
#'
#' Average air temperature and relative humidity data for the period of
#' one year, with time, day and month.
#'
#' @format A data.frame with 8760 observations and 5 variables:
#' \describe{
#' \item{MO}{Month of the year.}
#' \item{DY}{Day of the year.}
#' \item{HR}{Time of the day.}
#' \item{TMED}{Average Air Temperature - in degree C.}
#' \item{RH}{Relative Humidity - in \%.}
#' }
#' @source Data obtained from the Nasa Power platform (https://power.larc.nasa.gov/).
"clima"
#' Data: Data: Endogamy Coefficient Data Set
#'
#' Data set of phenotypic and genotypic variance, heritability and
#' differential selection for different variables.
#'
#' @format A data.frame with 7 observations and 5 variables:
#' \describe{
#' \item{Var}{Variable name.}
#' \item{VF}{Phenotypic Variance.}
#' \item{VG}{Genotypic Variance.}
#' \item{h}{Broad-sense heritability}
#' \item{DS}{Selection Differential}
#' }
#' @source Real data for use.
"coefend"
#' Data: Data set for calculating the environmental deviation
#'
#' Data set with average air temperature and precipitation values per environment
#'
#' @format A data.frame with 449 observations and 3 variables:
#' \describe{
#' \item{ENV}{Selection environment.}
#' \item{TMED}{Average Air Temperature (in degree C).}
#' \item{PREC}{Precipitation (in mm)}
#' }
#' @source Real field data for use.
"desvamb"
#' Data: GxE Interaction
#'
#' Data set with strains and test subjects from a GxE experiment.
#'
#' @format A data.frame with 55 observations and 5 variables:
#' \describe{
#' \item{GEN}{Selected lines in a GXE experiment.}
#' \item{ENV}{Selection environments.}
#' \item{NG}{Number of grains measured in the lines.}
#' \item{MG}{Grain mass measured in the lines (in g)}
#' \item{CICLO}{Length of crop cycle (in days)}
#' }
#' @source Real field data for use.
"genot"
#' Data Set for Leaf Area Index
#'
#' Data set with 10 genotypes and values for leaf length, leaf width, number
#' of total leaves and number of dry leaves
#'
#' @format A data.frame with 10 observations and 5 variables:
#' \describe{
#' \item{GEN}{Column with the genotypes.}
#' \item{C}{Leaf lenght}
#' \item{L}{Leaf width}
#' \item{TNL}{Total number of leaves.}
#' \item{TDL}{Total dry leavesh.}
#' }
#' @source Simulated data.
"leafarea"
#' Data: Wheat Data Set with Protein and Grain Yield
#'
#' Data set with wheat genotypes, protein percentage and grain yield.
#'
#' @format A data.frame with 24 observations and 7 variables:
#' \describe{
#' \item{POP}{Base population.}
#' \item{MGP_MF}{Phenotypic average of grain mass per plant.}
#' \item{MGP_GP}{Genotypic average of grain mass per plant.}
#' \item{VF}{Phenotypic variance}
#' \item{VG}{Genetic variance}
#' \item{H2}{Heritability in the broad sense}
#' \item{Test}{Witness parameters}
#' }
#' @source Real field data for use.
"lin"
#' Data: Maize Dataset
#'
#' Data set with progenies and maternal and paternal maize genitors.
#'
#' @format A data.frame with 4 observations and 3 variables:
#' \describe{
#' \item{P}{Progenies.}
#' \item{GM}{Maternal Parent}
#' \item{GP}{Patern Parent}
#' }
#' @source Simulated Data.
"maize"
#' Soybean Plastochron Estimation Data Set
#'
#' Fictitious data set for estimating soybean plastochron based on
#' on the number of nodes
#'
#' @format A data.frame with 135 observations and 5 variables:
#' \describe{
#' \item{CICLO}{Days in the soybean cycle.}
#' \item{GEN}{The column with the name of the genotype.}
#' \item{TMED}{The column with the average temperature values.}
#' \item{EST}{The column with the phenological stage.}
#' \item{NN}{The column with the number of nodes.}
#' }
#' @source Simulated data for use.
"pheno"
#' Data: Wheat Dataset 1
#'
#' Data set with wheat cultivars and grain rheological characters.
#'
#' @format A data.frame with 360 observations and 5 variables:
#' \describe{
#' \item{Cult}{Wheat cultivars.}
#' \item{Am}{Sample identification number.}
#' \item{NQ}{Falling Number.}
#' \item{W}{Gluten Strength (W).}
#' \item{PTN}{Grain Protein.}
#' }
#' @source Real laboratory data.
"ptn"
#' Data: Wheat Dataset 2
#'
#' Wheat genotype, protein and grain yield data set
#'
#' @format A data.frame with 360 observations and 5 variables:
#' \describe{
#' \item{CULTIVAR}{Wheat cultivars.}
#' \item{REP}{Repetition number.}
#' \item{PTN}{Grain protein.}
#' \item{RG}{Grain yield (kg ha)}
#' }
#' @source Real field data.
"ptnrg"
#' Data: Wheat Dataset 3
#'
#' Data set from a wheat experiment with different herbicide management.
#'
#' @format A data.frame with 19 observations and 6 variables:
#' \describe{
#' \item{TEST}{Treatment identification.}
#' \item{CE}{Ear length.}
#' \item{ME}{Ear mass}
#' \item{NGE}{Number of grains on the cob.}
#' \item{MGE}{Grain mass of ear.}
#' \item{NEE}{Number of spikelets per spike}
#' }
#' @source Real field data for use.
"trigo"
#' Data Set for Seed Vigor Extraction
#'
#' Data set from experiment with wheat genotypes subjected to different
#' sowing density.
#'
#' @format A data.frame with 54 observations and 6 variables:
#' \describe{
#' \item{Trat}{Column with treatments.}
#' \item{PC}{First Count}
#' \item{G}{Germination percentage.}
#' \item{CPA}{Length of aerial part.}
#' \item{RAD}{Root length.}
#' \item{MS}{Seedling dry mass.}
#' \item{EC}{See what EC is.}
#' }
#' @source Real field data for use.
"vig"
#' Data Set for obtaining genetic parameters.
#'
#' Dataset with two breeding populations, 20 genotypes per population and three
#' replicates per genotype.
#'
#' @format A data.frame with 60 observations and 4 variables:
#' \describe{
#' \item{Pop}{Column with population names.}
#' \item{Gen}{Column with genotype names.}
#' \item{Rep}{Column with replications.}
#' \item{VAR1}{Column with numerical values of the random variable.}
#' }
#' @source Simulated data for use.
"genot2"
#' Data Set with air temperature and incident radiation.
#'
#' @format A data.frame with 100 observations and 4 variables:
#' \describe{
#' \item{Day}{Column with cycle lenght.}
#' \item{Period}{Column with two periods (vegetative and reproductive).}
#' \item{Temperature}{Average air temperature values.}
#' \item{Radiation}{Incident radiation values.}
#' }
#' @source Simulated data for use.
"termaldata"
.estimatebreed_env <- new.env(parent = emptyenv())
.onAttach <- function(libname, pkgname) {
packageStartupMessage("EstimateBreed package loaded.")
}
utils::globalVariables(
c(
".estimatebreed_env", "Ciclo", "MONTH", "Control", "valores", "dados",
"sigmaE", "sigmaG", "sigmaP", "ECV", "GCV", "PCV", "H2", "GA", "GAM",
"u", "primeiro_dia_germinacao", "DPclim", "AF", "ALA", "AS", "PotLAI",
"RealLAI", "b2", "HW", "TTd", "ATT", "Class", "modelo", "model",
"model_summary", "rsq", "STA", "eq_text", "pred", "RH", "Temp", "Td",
"DELTAT", "WindS", "Prec", "RH2M", "T2M", "PRECTOTCORR", ":=", "<<-",
"AAT","DAS", "RED"
)
)
#' @import dplyr
#' @import ggplot2
#' @import hrbrthemes
#' @import broom
#' @import ggrepel
#' @import grid
#' @import httr
#' @import nasapower
#' @import tidyr
#' @import viridis
#' @import cowplot
#' @import sommer
#' @import lme4
#' @import minque
#' @import utils
#' @importFrom lubridate with_tz
#' @importFrom jsonlite fromJSON
#' @importFrom purrr flatten map map_dbl map2 map2_dbl
#' @importFrom grDevices rgb
#' @importFrom graphics boxplot layout
#' @importFrom stats aggregate aov coef lm nls nls.control pnorm sd setNames
#' residuals fitted na.omit as.formula
#' @importFrom car some leveneTest
#' @importFrom lmtest bptest
#' @importFrom stats shapiro.test bartlett.test
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.