Nothing
relab_matrix = xue_microbiome_sample
group = "subject"
time = "timepoint"
K = NULL
w = NULL
arrange = FALSE
w = time_weights(times = relab_matrix$timepoint, group = relab_matrix$subject)
# Test the weighting function
test_that("relab_sample_weighter works", {
# Many groups, one matrix ----------------------------------------------------
# no, K, yes group and time
expect_no_condition(relab_sample_weighter(relab = relab_matrix, group = "subject", time = "timepoint"))
# K and time, no group
expect_error(relab_sample_weighter(relab = relab_matrix, K = 524, time = "timepoint"))
# K and group and time
expect_no_error(relab_sample_weighter(relab = relab_matrix, K = 524, group = "subject", time = "timepoint"))
# Specify w instead of time ---------------------------------
expect_no_error(relab_sample_weighter(relab = relab_matrix, group = "subject", w = w, K = 524))
# One group ------------------------------------------------------------------
# K and group and time
expect_no_error(relab_sample_weighter(relab = dplyr::filter(relab_matrix, subject == "XBA"),
K = 524, group = "subject",
time = "timepoint"))
# group and time, no K
expect_no_error(relab_sample_weighter(relab = dplyr::filter(relab_matrix, subject == "XBA"),
group = "subject", time = "timepoint"))
# K, no group
expect_no_error(relab_sample_weighter(relab = dplyr::filter(relab_matrix, subject == "XBA"),
K = 524, time = "timepoint"))
# Specify w instead of time ---------------------------------
expect_no_error(relab_sample_weighter(relab = dplyr::filter(relab_matrix, subject == "XBA"),
group = "subject", w = w, K = 524))
expect_no_error(relab_sample_weighter(relab = dplyr::filter(relab_matrix, subject == "XBA"),
w = w, K = 524))
})
# Test arrange function
test_that("arrange_categories works", {
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = TRUE, group = "subject", time = "timepoint"))
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = TRUE, K = 524))
expect_true(all(expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = TRUE, K = 524)) ==
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = "both", K = 524))))
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = "both", group = "subject", time = "timepoint"))
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = "both", K = 524))
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = "horizontal", group = "subject", time = "timepoint"))
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = "horizontal", K = 524))
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = "vertical", group = "subject", time = "timepoint"))
expect_no_condition(arrange_categories(relab_matrix = relab_matrix, arrange = "vertical", K = 524))
})
# Test the similarity matrix checker
test_that("S_checker works", {
# Correct matrix goes through
expect_equal(S_checker(S = xue_species_similarity, K = 524, relab_matrix = xue_microbiome_sample), as.matrix(xue_species_similarity))
expect_equal(S_checker(S = xue_species_similarity, K = 524), as.matrix(xue_species_similarity))
# Shuffled matrix is resorted
scramble = sample(1:524)
expect_warning(S_checker(S = xue_species_similarity[scramble, scramble], K = 524, relab_matrix = xue_microbiome_sample))
expect_warning(expect_equal(S_checker(S = xue_species_similarity[scramble, scramble], K = 524, relab_matrix = xue_microbiome_sample), as.matrix(xue_species_similarity)))
# asymmetry is warned of
asymmetric = xue_species_similarity
asymmetric[1,2] = 1
expect_warning(S_checker(S = asymmetric, K = 524, relab_matrix = xue_microbiome_sample))
# non-1 diagonal elements break
non1 = xue_species_similarity
non1[20, 20] = 0.5
expect_error(S_checker(S = non1, K = 524, relab_matrix = xue_microbiome_sample))
# any negative elements break
neg = xue_species_similarity
neg[20, 24] = -0.2
neg[24, 20] = -0.2
expect_error(S_checker(S = neg, K = 524, relab_matrix = xue_microbiome_sample))
# any greater than 1 elements break
big = xue_species_similarity
big[20, 24] = 2
big[24, 20] = 2
expect_error(S_checker(S = big, K = 524, relab_matrix = xue_microbiome_sample))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.