| mle | R Documentation | 
For a given dataset, this function serves to find maximum likelihood parameter estimates for some specified parametric probability distribution.
mle(x, dist, start = NULL, method = "Nelder-Mead")
x | 
 A univariate dataset (a vector).  | 
dist | 
 Distribution to be fitted to   | 
start | 
 Starting parameter values for the optimization algorithm (see   | 
method | 
 The optimization method to be used (see   | 
fit | 
 
  | 
x.info | 
 Array that contains the following columns: 
  | 
dist | 
 Distribution fitted to   | 
par.hat | 
 Vector of estiamted parameters.  | 
cov.hat | 
 Observed Fisher's information matrix.  | 
k | 
 Number of parameters  | 
n | 
 Number of observations (i.e.,   | 
log.like | 
 Log-likelihood value evaluated at the estimated parameter (i.e.   | 
aic | 
 Akaike information criterion computed as   | 
ad | 
 Anderson Darling statistic evaluated at the estimated parameter values.  | 
data.name | 
 Name for   | 
rho | 
 Pearson's correlation coefficient computed as   | 
optim, distr, boot.mle, metropolis, Q.conf.int
data(yarns) x <- yarns$x fit.x <- mle(x,'weibull',c(.1,.1)) fit.x names(fit.x) #plot(fit.x) #plot(fit.x,TRUE,alpha=.01) p <- c(.9,.95,.99) distr(p,model=fit.x,type='q') Q.conf.int(p,fit.x,.01) Q.conf.int(p,fit.x,.01,TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.