Nothing
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
#' @title Kernel functions
#' @name kernel
#'
#' @keywords internal
#'
#' @description
#' Kernel functions transform observed p-values or their support according to
#' \[HLR\], \[PB\] and \[HGR\]. The output is used by [`discrete.LR()`],
#' [`discrete.PB()`] and [`discrete.GR()`], respectively.
#' For each procedure, there is a kernel for fast computation and one for
#' calculation of critical values. Kernel function names followed by `_crit`,
#' e.g. `kernel_DGR_crit`, compute and return these critical values, while
#' kernel functions ending with `_fast` only transform p-values and are
#' therefore faster.
#'
#' **Note**: As of version 2.0, these functions are purely internal functions!
#' As a consequence, they have to be called directly via `:::`, e.g.
#' `FDX:::kernel_DGR_fast()`. But users should **not** rely on them, as
#' parameters (including their names, order, etc.) may be changed without
#' notice!
#'
#' @seealso
#' [`FDX`][`FDX-package`], [`discrete.LR()`]
#' [`discrete.GR()`], [`discrete.PB()`],
#' [`weighted.LR()`], [`weighted.GR()`],
#' [`discrete.PB()`]
#'
#' @templateVar pCDFlist TRUE
#' @templateVar adaptive TRUE
#' @templateVar alpha TRUE
#' @templateVar zeta TRUE
#' @templateVar exact TRUE
#' @templateVar weights FALSE
#' @template param
#'
#' @param sorted_pv numeric vector containing the raw p-values, sorted
#' in increasing order.
#' @param stepUp single boolean specifying whether to conduct the
#' step-up (`TRUE`) or step-down (`FALSE`; the
#' default) version of the discrete Lehmann-Romano
#' procedure.
#' @param support numeric vector, sorted in increasing order, that
#' contains the entirety of all observable values of
#' the p-value supports; for `kernel_DLR_fast()`, it
#' is ignored if `stepUp = FALSE`.
#' @param pCDFcounts integer vector of counts that indicates to how many
#' p-values each **unique** p-value distribution
#' belongs.
#' @param sorted_w_pv numeric vector containing the weighted p-values,
#' sorted in increasing order.
#' @param weights numeric vector containing the **rescaled** weights,
#' sorted in **de**creasing order.
#' @param geom_weighting a boolean specifying whether to conduct geometric
#' (`TRUE`) or arithmetic (`FALSE`)
#' weighting.
#'
#' @template example
#' @examples \dontrun{
#'
#' alpha <- 0.05
#'
#' # If not searching for critical constants, we use only the observed p-values
#' sorted.pvals <- sort(raw.pvalues)
#' y.DLR.fast <- FDX:::kernel_DLR_fast(pCDFlist, sorted.pvals, TRUE)
#' y.NDGR.fast <- FDX:::kernel_DGR_fast(pCDFlist, sorted.pvals, FALSE)$pval.transf
#' # transformed values
#' y.DLR.fast
#' y.NDGR.fast
#'
#' # compute support
#' pv.list <- sort(unique(unlist(pCDFlist)))
#' y.DGR.crit <- FDX:::kernel_DGR_crit(pCDFlist, pv.list, sorted.pvals, TRUE)
#' y.NDPB.crit <- FDX:::kernel_DPB_crit(pCDFlist, pv.list, sorted.pvals, FALSE)
#' # critical constants
#' y.DGR.crit$crit.consts
#' y.NDPB.crit$crit.consts
#' # transformed values
#' y.DGR.crit$pval.transf
#' y.NDPB.crit$pval.transf
#' }
#'
#' @return
#' For `*_fast` kernels, a vector of transformed p-values is returned; `*_crit`
#' kernels return a list object with critical constants (`$crit.consts`) and
#' transformed p-values (`$pval.transf`).
#'
NULL
#' @rdname kernel
kernel_DLR_fast <- function(pCDFlist, sorted_pv, adaptive = TRUE, alpha = 0.05, stepUp = FALSE, zeta = 0.5, support = numeric(), pCDFcounts = NULL) {
.Call('_FDX_kernel_DLR_fast', PACKAGE = 'FDX', pCDFlist, sorted_pv, adaptive, alpha, stepUp, zeta, support, pCDFcounts)
}
#' @rdname kernel
kernel_DLR_crit <- function(pCDFlist, support, sorted_pv, adaptive = TRUE, alpha = 0.05, zeta = 0.5, stepUp = FALSE, pCDFcounts = NULL) {
.Call('_FDX_kernel_DLR_crit', PACKAGE = 'FDX', pCDFlist, support, sorted_pv, adaptive, alpha, zeta, stepUp, pCDFcounts)
}
#' @rdname kernel
kernel_wLR_fast <- function(sorted_w_pv, weights, alpha = 0.05, geom_weighting = FALSE) {
.Call('_FDX_kernel_wLR_fast', PACKAGE = 'FDX', sorted_w_pv, weights, alpha, geom_weighting)
}
#' @rdname kernel
kernel_DGR_fast <- function(pCDFlist, sorted_pv, adaptive = TRUE, alpha = 0.05, pCDFcounts = NULL) {
.Call('_FDX_kernel_DGR_fast', PACKAGE = 'FDX', pCDFlist, sorted_pv, adaptive, alpha, pCDFcounts)
}
#' @rdname kernel
kernel_DGR_crit <- function(pCDFlist, support, sorted_pv, adaptive = TRUE, alpha = 0.05, zeta = 0.5, pCDFcounts = NULL) {
.Call('_FDX_kernel_DGR_crit', PACKAGE = 'FDX', pCDFlist, support, sorted_pv, adaptive, alpha, zeta, pCDFcounts)
}
#' @rdname kernel
kernel_wGR_fast <- function(sorted_w_pv, weights, alpha = 0.05, geom_weighting = FALSE) {
.Call('_FDX_kernel_wGR_fast', PACKAGE = 'FDX', sorted_w_pv, weights, alpha, geom_weighting)
}
#' @rdname kernel
kernel_DPB_fast <- function(pCDFlist, sorted_pv, adaptive = TRUE, alpha = 0.05, exact = TRUE, pCDFcounts = NULL) {
.Call('_FDX_kernel_DPB_fast', PACKAGE = 'FDX', pCDFlist, sorted_pv, adaptive, alpha, exact, pCDFcounts)
}
#' @rdname kernel
kernel_DPB_crit <- function(pCDFlist, support, sorted_pv, adaptive = TRUE, alpha = 0.05, zeta = 0.5, exact = TRUE, pCDFcounts = NULL) {
.Call('_FDX_kernel_DPB_crit', PACKAGE = 'FDX', pCDFlist, support, sorted_pv, adaptive, alpha, zeta, exact, pCDFcounts)
}
#' @rdname kernel
kernel_wPB_fast <- function(sorted_w_pv, weights, alpha = 0.05, geom_weighting = FALSE, exact = TRUE) {
.Call('_FDX_kernel_wPB_fast', PACKAGE = 'FDX', sorted_w_pv, weights, alpha, geom_weighting, exact)
}
geom_weight <- function(pvalues, weights) {
.Call('_FDX_geom_weight', PACKAGE = 'FDX', pvalues, weights)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.