View source: R/KNN.information.measures.R
KL.dist | R Documentation |
Compute Kullback-Leibler symmetric distance.
KL.dist(X, Y, k = 10, algorithm=c("kd_tree", "cover_tree", "brute"))
KLx.dist(X, Y, k = 10, algorithm="kd_tree")
X |
An input data matrix. |
Y |
An input data matrix. |
k |
The maximum number of nearest neighbors to search. The default value is set to 10. |
algorithm |
nearest neighbor search algorithm. |
Kullback-Leibler distance is the sum of divergence q(x)
from p(x)
and p(x)
from q(x)
.
KL.*
versions return distances from C
code to R
but KLx.*
do not.
Return the Kullback-Leibler distance between X
and Y
.
Shengqiao Li. To report any bugs or suggestions please email: lishengqiao@yahoo.com
S. Boltz, E. Debreuve and M. Barlaud (2007). “kNN-based high-dimensional Kullback-Leibler distance for tracking”. Image Analysis for Multimedia Interactive Services, 2007. WIAMIS '07. Eighth International Workshop on.
S. Boltz, E. Debreuve and M. Barlaud (2009). “High-dimensional statistical measure for region-of-interest tracking”. Trans. Img. Proc., 18:6, 1266–1283.
KL.divergence
.
set.seed(1000)
X<- rexp(10000, rate=0.2)
Y<- rexp(10000, rate=0.4)
KL.dist(X, Y, k=5)
KLx.dist(X, Y, k=5)
#thoretical distance = (0.2-0.4)^2/(0.2*0.4) = 0.5
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.