k-nearest neighbour classification for test set from training set. For
each row of the test set, the `k`

nearest (in Euclidean distance)
training set vectors are found, and the classification is decided by
majority vote, with ties broken at random. If there are ties for the
`k`

th nearest vector, all candidates are included in the vote.

1 |

`train` |
matrix or data frame of training set cases. |

`test` |
matrix or data frame of test set cases. A vector will be interpreted as a row vector for a single case. |

`cl` |
factor of true classifications of training set. |

`k` |
number of neighbours considered. |

`prob` |
if this is true, the proportion of the votes for the winning class
are returned as attribute |

`algorithm` |
nearest neighbor search algorithm. |

factor of classifications of test set. `doubt`

will be returned as `NA`

.

Shengqiao Li. To report any bugs or suggestions please email: shli@stat.wvu.edu.

B.D. Ripley (1996). *Pattern Recognition and Neural Networks.* Cambridge.

M.N. Venables and B.D. Ripley (2002).
*Modern Applied Statistics with S.* Fourth edition. Springer.

`ownn`

, `knn.cv`

and `knn`

in class.

1 2 3 4 5 6 |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.