Description Usage Arguments Details Value Author(s) References See Also Examples
These functions compute the diversification ratio, the volatility weighted average correlation and concentration ratio of a portfolio.
1 2 3 |
weights |
Vector: portfolio weights. |
Sigma |
Matrix: Variance-covariance matrix of portfolio assets. |
The diversification ratio of a portfolio is defined as:
DR(ω) = \frac{∑_{i = 1}^N ω_i σ_i}{√{ω' Σ ω}}
for a portfolio of N assets and ω_i signify the weight of the i-th asset and σ_i its standard deviation and Σ the variance-covariance matrix of asset returns. The diversification ratio is therefore the weighted average of the assets' volatilities divided by the portfolio volatility.
The concentration ration is defined as:
CR = \frac{∑_{i = 1}^N (ω_i σ_i)^2}{(∑_{i = 1}^N ω_i σ_i)^2}
and the volatility-weighted average correlation of the assets as:
ρ(ω) = \frac{∑_{i > j}^N (ω_i σ_i ω_j σ_j)ρ_{ij}}{∑_{i > j}^N (ω_i σ_i ω_j σ_j)}
The following equation between these measures does exist:
DR(ω) = \frac{1}{√{ρ(ω) (1 - CR(ω)) + CR(ω)}}
numeric
, the value of the diversification measure.
Bernhard Pfaff
Choueifaty, Y. and Coignard, Y. (2008): Toward Maximum Diversification, Journal of Portfolio Management, Vol. 34, No. 4, 40–51.
Choueifaty, Y. and Coignard, Y. and Reynier, J. (2011): Properties of the Most Diversified Portfolio, Working Paper, http://papers.ssrn.com
1 2 3 4 5 6 7 8 9 | data(MultiAsset)
Rets <- returnseries(MultiAsset, method = "discrete", trim = TRUE)
w <- Weights(PMD(Rets))
V <- cov(Rets)
DR <- dr(w, V)
CR <- cr(w, V)
RhoW <- rhow(w, V)
test <- 1 / sqrt(RhoW * (1 - CR) + CR)
all.equal(DR, test)
|
Loading required package: cccp
Loading required package: Rglpk
Loading required package: slam
Using the GLPK callable library version 4.52
Loading required package: timeSeries
Loading required package: timeDate
Financial Risk Modelling and Portfolio Optimisation with R (version 0.4-1)
Iteration: 0
pobj: 0.11477
dobj: -0.961072
pinf: 0
dinf: 3.76706
dgap: 1.07584
Iteration: 1
pobj: 0.113632
dobj: 0.00263219
pinf: 2.22045e-16
dinf: 0.387308
dgap: 0.111
Iteration: 2
pobj: 0.110322
dobj: 0.0805013
pinf: 2.22045e-16
dinf: 0.095544
dgap: 0.0298208
Iteration: 3
pobj: 0.107587
dobj: 0.0965035
pinf: 4.44089e-16
dinf: 0.0295032
dgap: 0.0110831
Iteration: 4
pobj: 0.105282
dobj: 0.102542
pinf: 8.88178e-16
dinf: 0.00180192
dgap: 0.00273982
Iteration: 5
pobj: 0.10454
dobj: 0.103948
pinf: 1.55431e-15
dinf: 9.80713e-05
dgap: 0.000592444
Iteration: 6
pobj: 0.104348
dobj: 0.10421
pinf: 3.10862e-15
dinf: 8.12006e-06
dgap: 0.000138232
Iteration: 7
pobj: 0.104303
dobj: 0.104281
pinf: 6.21725e-15
dinf: 3.19953e-07
dgap: 2.13694e-05
Iteration: 8
pobj: 0.104297
dobj: 0.104295
pinf: 1.17684e-14
dinf: 2.46719e-08
dgap: 2.67608e-06
Iteration: 9
pobj: 0.104297
dobj: 0.104296
pinf: 2.10942e-14
dinf: 5.00253e-09
dgap: 6.11958e-07
Iteration: 10
pobj: 0.104297
dobj: 0.104297
pinf: 3.93019e-14
dinf: 6.97906e-10
dgap: 1.06644e-07
Iteration: 11
pobj: 0.104297
dobj: 0.104297
pinf: 7.54952e-14
dinf: 5.72651e-11
dgap: 1.18903e-08
Optimal solution found.
[1] TRUE
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.