View source: R/predict_lfreg.R
predict.lfreg | R Documentation |
Prediction of LFREG model
## S3 method for class 'lfreg' predict(object, ..., newdata = NULL, type = c("probabilities", "labels"))
object |
LFREG model for which predictions are computed |
... |
additional arguments relevant for the generic method |
newdata |
an optional argument. Newdata should be organized as a list. The elements of the list
are covariates from LFREG model, respectively. No data transformation is needed. Thus, functional covariates are entered in the list |
type |
c("probabilities", "labels") |
predictions of dependent variable y
library(fda) precipitation_data = CanadianWeather$daily[1:334,,"Precipitation.mm"] annualprec = apply(precipitation_data,2,sum) # without December y = ifelse(annualprec<mean(annualprec), 0, 1) y = as.factor(y) x = CanadianWeather$daily[1:334,,"Temperature.C"] xbasis = create.fourier.basis(c(1,334),5) # 5 basis functions xfd = smooth.basis(c(1:334),x,xbasis)$fd bbasis = create.fourier.basis(c(0,334),5) betalist = list(bbasis) formula = y ~ xfd lfreg.model = lfreg(formula, betalist = betalist) # Prediction on new data newdata = list(CanadianWeather$dailyAv[1:365,,1]) # newdata = list(xfd_1, latitude, longitude) yhat = predict(lfreg.model, newdata = newdata, type = "labels")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.