View source: R/predict_olfreg.R
predict.olfreg | R Documentation |
Prediction of OLFREG model
## S3 method for class 'olfreg' predict(object, ..., newdata = NULL, type = c("probabilities", "labels"))
object |
OLFREG model for which predictions are computed |
... |
additional arguments relevant for the generic method |
newdata |
an optional argument. Newdata should be organized as a list. The elements of the list
are covariates from OLFREG model, respectively. No data transformation is needed. Thus, functional covariates are entered in the list |
type |
c("probabilities", "labels") |
predictions of dependent variable y
# cycling dataset library(fda) # creation of ordinal variable from HR variable zoneHR=rep(0,216) zoneHR[which(rowMeans(cycling$HR[,1:1700])<107)]=1 zoneHR[which((rowMeans(cycling$HR[,1:1700])<125)&(rowMeans(cycling$HR[,1:1700])>107))]=2 zoneHR[which((rowMeans(cycling$HR[,1:1700])<142)&(rowMeans(cycling$HR[,1:1700])>125))]=3 zoneHR[which((rowMeans(cycling$HR[,1:1700])<160)&(rowMeans(cycling$HR[,1:1700])>142))]=4 zoneHR[which((rowMeans(cycling$HR[,1:1700])>160))]=5 # first functional variable - power (WATTS) watts = t(cycling$WATTS[,1:1700]) # set up a fourier basis system due to its cycling pattern xbasis = create.fourier.basis(c(1,1700),50) # 50 basis functions for example watts.fd = smooth.basis(c(1:1700),watts,xbasis)$fd zoneHR = as.factor(zoneHR) # additional functional variable - cadence (CAD) cad = t(cycling$CAD[,1:1700]) # set up a functional variable for cad xbasis2 = create.bspline.basis(c(1,1700), nbasis = 25, norder = 4) cad.fd = smooth.basis(c(1:1700),cad,xbasis2)$fd formula = zoneHR ~ watts.fd + cad.fd olfreg.model = olfreg(formula = formula) # Predict with new data included watts_new = t(cycling$WATTS[,101:1800]) cad_new = t(cycling$CAD[,101:1800]) newdata = list(watts_new, cad_new) # could also be fd var instead of raw data yhat = predict(olfreg.model, newdata = newdata, type = "labels")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.