| estimkiener11 | R Documentation |
Several functions to estimate the parameters of asymmetric Kiener distributions with just 5, 7 or 11 quantiles.
estimkiener11(x11, p11, ord = 7, maxk = 10)
estimkiener7(x7, p7, maxk = 10)
estimkiener5(x5, p5, maxk = 20, maxe = 0.9)
ord |
integer. Option for probability selection and treatment. |
maxk |
numeric. Maximum value for k (kappa). |
x5, x7, x11 |
vector of 5, 7 or 11 quantiles. |
p5, p7, p11 |
vector of 5, 7 or 11 probabilities. |
maxe |
numeric. Maximum value for abs(e) (epsilon).
Maximum is |
These functions, called by paramkienerX5, paramkienerX7,
paramkienerX, use 5, 7 or 11 probabilites and quantiles
to estimate the parameters of Kiener distributions.
p5, x5 are obtained with functions fiveprobs(X) and quantile(p5).
p7, x7 are obtained with functions sevenprobs(X) and quantile(p7).
p11, x11 are obtained with functions elevenprobs(X) and quantile(p11).
The extraction of the 11 probabilities is controlled with the option ord
which can take 12 integer values, ord = 7 being the default.
Small dataset should consider ord = 5 and
large dataset can consider ord = 12:
c(p1, 0.35, 0.50, 0.65, 1-p1)
c(p2, 0.35, 0.50, 0.65, 1-p2)
c(p1, p2, 0.35, 0.50, 0.65, 1-p2, 1-p1)
c(p1, p2, p3, 0.35, 0.50, 0.65, 1-p3, 1-p2, 1-p1)
c(p1, 0.25, 0.50, 0.75, 1-p1)
c(p2, 0.25, 0.50, 0.75, 1-p2)
c(p1, p2, 0.25, 0.50, 0.75, 1-p2, 1-p1)
c(p1, p2, p3, 0.25, 0.50, 0.75, 1-p3, 1-p2, 1-p1)
c(p1, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p1)
c(p2, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p2)
c(p1, p2, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p2, 1-p1)
c(p1, p2, p3, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p3, 1-p2, 1-p1)
p5 = fiveprobs(X) corresponds to c(p1, 0.25, 0.50, 0.75, 1-p1).
p7 = sevenprobs(X) corresponds to c(p1, p2, 0.25, 0.50, 0.75, 1-p2, 1-p1).
The above probabilities are then transfered to the quantile function
whose parameter type can change significantly the extracted quantiles.
Our experience is that type = 6 is appropriate when k > 1.9 and
type = 5 is appropriate when k < 1.9.
Other types type = 8 and type = 9 can be considered as well.
The other types should be ignored.
(Note: when k < 1.5, algorithm algo = "reg" returns better
results).
Parameter maxk controls the maximum allowed value for estimated parameter k.
Reasonnable values are maxk = 10, 15, 20. Default is maxk = 10
to be consistent with regkienerLX.
elevenprobs, paramkienerX, quantile,
roundcoefk.
require(timeSeries)
## Choose j in 1:16. Choose ord in 1:12 (7 is default)
j <- 5
ord <- 5
DS <- getDSdata()
p11 <- elevenprobs(DS[[j]])
x11 <- quantile(DS[[j]], probs = p11, na.rm = TRUE, names = TRUE, type = 6)
round(estimkiener11(x11, p11, ord), 3)
## Compare the results obtained with the 12 different values of ord on stock j
compare <- function(ord, x11, p11) {estimkiener11(x11, p11, ord)}
coefk <- t(sapply(1:12, compare, x11, p11))
rownames(coefk) <- 1:12
mcoefk <- apply(coefk, 2, mean) # the mean of the 12 results above
roundcoefk(rbind(coefk, mcoefk), 13)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.