| logisst | R Documentation |
Density, distribution function, quantile function, random generation,
value-at-risk, left-tail mean, right-tail mean, expected shortfall
for the standardized logistic distribution, equivalent to
dpqrlogis(..., scale = g*sqrt(3)/pi).
dlogisst(x, m = 0, g = 1, log = FALSE)
plogisst(q, m = 0, g = 1, lower.tail = TRUE, log.p = FALSE)
qlogisst(p, m = 0, g = 1, lower.tail = TRUE, log.p = FALSE)
rlogisst(n, m = 0, g = 1)
dplogisst(p, m = 0, g = 1, log = FALSE)
dqlogisst(p, m = 0, g = 1, k = 3.2, log = FALSE)
llogisst(x, m = 0, g = 1)
dllogisst(lp, m = 0, g = 1, k = 3.2, log = FALSE)
qllogisst(lp, m = 0, g = 1, k = 3.2, lower.tail = TRUE)
varlogisst(p, m = 0, g = 1, k = 3.2, lower.tail = TRUE,
log.p = FALSE)
ltmlogisst(p, m = 0, g = 1, lower.tail = TRUE, log.p = FALSE)
rtmlogisst(p, m = 0, g = 1, lower.tail = TRUE, log.p = FALSE)
eslogisst(p, m = 0, g = 1, lower.tail = TRUE, log.p = FALSE)
x |
vector of quantiles. |
m |
numeric. a central parameter (also used in model K1, K2, K3 and K4). |
g |
numeric. a scale parameter (also used in model K1, K2, K3 and K4). |
log |
boolean. |
q |
vector of quantiles. |
lower.tail |
logical. If TRUE, use p. If FALSE, use 1-p. |
log.p |
logical. If TRUE, probabilities p are given as log(p). |
p |
vector of probabilities. |
n |
number of observations. If length(n) > 1, the length is taken to be the number required. |
k |
numeric. The tail parameter, preferably strictly positive. Can be a vector (see details). |
lp |
vector of logit of probabilities. |
dlogisst function (log is available) is defined for
x in (-Inf, +Inf) by:
dlogisst(x, m, g) =
stats::dlogis(x, location = m, scale = g*sqrt(3)/pi)
plogisst function is defined for q in (-Inf, +Inf) by:
plogisst(q, m, g) =
stats::plogis(q, location = m, scale = g*sqrt(3)/pi)
qlogisst function is defined for p in (0, 1) by:
qlogisst(p, m, g) =
stats::qlogis(p, location = m, scale = g*sqrt(3)/pi)
rlogisst function generates n random values.
In addition to the classical formats, the prefixes dp, dq, l, dl, ql are also provided:
dplogisst function (log is available) is defined for p in (0, 1) by:
dplogisst(p, m, g) = p*(1-p)/g*pi/sqrt(3) + m*0
dqlogisst function (log is available) is defined for p in (0, 1) by:
dqlogisst(p, m, g) = 1/p/(1-p)*sqrt(3)/pi*g + m*0
llogisst function is defined for x in (-Inf, +Inf) by:
llogisst(x, m, g) = (x-m)/g*pi/sqrt(3)
dllogisst function is defined for lp = logit(p) in (-Inf, +Inf) by :
dllogisst(lp, m, g) = p*(1-p)/g*pi/sqrt(3)
qllogisst function is defined for lp = logit(p) in (-Inf, +Inf) by :
qllogisst(lp, m, g) = m + sqrt(3)/pi*g
If k is a vector, then the use of the function outer
is recommanded.
Functions eslogis is the expected shortfall of the logistic function
(times a factor 2).
When p<=0.5, it is equivalent (times -1) to the left tail mean ltmlogisst.
When p>0.5, it is equivalent to the right tail mean rtmlogisst.
ltmlogisst and rtmlogisst are used to calculate the h parameter
in hkiener1, hkiener2, hkiener3, hkiener4.
Kiener distribution K1 kiener1 which has
location (m) and scale (g) parameters.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.