The heterogeneous treatment effect estimation procedure proposed by Imai and Ratkovic (2013)<DOI: 10.1214/12-AOAS593>. The proposed method is applicable, for example, when selecting a small number of most (or least) efficacious treatments from a large number of alternative treatments as well as when identifying subsets of the population who benefit (or are harmed by) a treatment of interest. The method adapts the Support Vector Machine classifier by placing separate LASSO constraints over the pre-treatment parameters and causal heterogeneity parameters of interest. This allows for the qualitative distinction between causal and other parameters, thereby making the variable selection suitable for the exploration of causal heterogeneity. The package also contains the function, CausalANOVA, which estimates the average marginal interaction effects by a regularized ANOVA as proposed by Egami and Imai (2016+).

Author | Naoki Egami <negami@princeton.edu>, Marc Ratkovic <ratkovic@princeton.edu>, Kosuke Imai <kimai@princeton.edu>, |

Date of publication | 2016-12-31 08:42:19 |

Maintainer | Naoki Egami <negami@princeton.edu> |

License | GPL (>= 2) |

Version | 1.0 |

**AMIE:** Decomposing the Combination Effect into the AMEs and the...

**Carlson:** Data from conjoint analysis in Carlson (2015).

**CausalANOVA:** Estimating the AMEs and AMIEs with the CausalANOVA.

**cv.CausalANOVA:** Cross validation for the CausalANOVA.

**FindIt:** FindIt for Estimating Heterogeneous Treatment Effects

**FindIt-internal:** Internal FindIt functions

**GerberGreen:** Data from the 1998 New Haven Get-Out-the-Vote Experiment

**LaLonde:** National Supported Work Study Experimental Data

**plot.PredictFindIt:** Plot estimated treatment effects or predicted outcomes for...

**predict.FindIt:** Computing predicted values for each sample in the data.

FindIt

FindIt/src

FindIt/src/Makevars

FindIt/src/solve.f

FindIt/src/inverse.f

FindIt/NAMESPACE

FindIt/data

FindIt/data/LaLonde.rdata

FindIt/data/Carlson.rdata

FindIt/data/GerberGreen.rdata

FindIt/R

FindIt/R/stab.CausalANOVA.R
FindIt/R/CreatelevelIndex.R
FindIt/R/CoefExtract.R
FindIt/R/CreateCoef.R
FindIt/R/predict.FindIt.R
FindIt/R/plot.PredictEffect.R
FindIt/R/rangeCausalANOVAFit.R
FindIt/R/AMIEFit.R
FindIt/R/SVMHet.R
FindIt/R/Lcombinefunction.R
FindIt/R/Zcombinefunction.R
FindIt/R/CausalANOVAFit.R
FindIt/R/summary.CausalANOVA.R
FindIt/R/CausalANOVA.R
FindIt/R/lengthSlack.R
FindIt/R/plot.CausalANOVA.R
FindIt/R/summary.FindIt.R
FindIt/R/AMIE.R
FindIt/R/PsyConstraintCombine.R
FindIt/R/CreateWeights.R
FindIt/R/cv.CausalANOVA.R
FindIt/R/Glsei.R
FindIt/R/makeallway.R
FindIt/R/plot.cv.CausalANOVA.R
FindIt/R/CreateANOVAconst.R
FindIt/R/maketwoway.R
FindIt/MD5

FindIt/DESCRIPTION

FindIt/man

FindIt/man/CausalANOVA.Rd
FindIt/man/cv.CausalANOVA.Rd
FindIt/man/FindIt.Rd
FindIt/man/plot.PredictFindIt.Rd
FindIt/man/Carlson.Rd
FindIt/man/FindIt-internal.Rd
FindIt/man/LaLonde.Rd
FindIt/man/AMIE.Rd
FindIt/man/GerberGreen.Rd
FindIt/man/predict.FindIt.Rd
Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.