| lcmat | R Documentation |
This function transforms a general (possibly redundant) zero constraints matrix into a
linear combination (aggregation) matrix \mathbf{A}_{cs}.
When working with a general linearly constrained multiple (n-variate)
time series, getting a linear combination matrix \mathbf{A}_{cs} is a critical
step to obtain a structural-like representation such that
\mathbf{C}_{cs} = [\mathbf{I} \quad -\mathbf{A}],
where \mathbf{C}_{cs} is the full rank zero constraints matrix (Girolimetto and
Di Fonzo, 2023).
lcmat(cons_mat, method = "rref", tol = sqrt(.Machine$double.eps),
verbose = FALSE, sparse = TRUE)
cons_mat |
A ( |
method |
Method to use: " |
tol |
Tolerance for the " |
verbose |
If |
sparse |
Option to return a sparse matrix (default is |
A list with two elements: (i) the linear combination (aggregation) matrix
(agg_mat) and (ii) the vector of the column permutations (pivot).
Girolimetto, D. and Di Fonzo, T. (2023), Point and probabilistic forecast reconciliation for general linearly constrained multiple time series, Statistical Methods & Applications, in press. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10260-023-00738-6")}.
Strang, G. (2019), Linear algebra and learning from data, Wellesley, Cambridge Press.
Utilities:
FoReco2matrix(),
aggts(),
balance_hierarchy(),
commat(),
csprojmat(),
cstools(),
ctprojmat(),
cttools(),
df2aggmat(),
recoinfo(),
res2matrix(),
shrink_estim(),
teprojmat(),
tetools(),
unbalance_hierarchy()
## Two hierarchy sharing the same top-level variable, but not sharing the bottom variables
# X X
# |-------| |-------|
# A B C D
# |---|
# A1 A2
# 1) X = C + D,
# 2) X = A + B,
# 3) A = A1 + A2.
cons_mat <- matrix(c(1,-1,-1,0,0,0,0,
1,0,0,-1,-1,0,0,
0,0,0,1,0,-1,-1), nrow = 3, byrow = TRUE)
obj <- lcmat(cons_mat = cons_mat, verbose = TRUE)
agg_mat <- obj$agg_mat # linear combination matrix
pivot <- obj$pivot # Pivot vector
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.