tecov | R Documentation |
This function provides an approximation of the temporal base forecasts errors covariance matrix using different reconciliation methods (see Di Fonzo and Girolimetto, 2023).
tecov(comb, agg_order = NULL, res = NULL, tew = "sum",
mse = TRUE, shrink_fun = shrink_estim, ...)
comb |
A string specifying the reconciliation method.
|
agg_order |
Highest available sampling frequency per seasonal cycle (max. order
of temporal aggregation, |
res |
A ( |
tew |
A string specifying the type of temporal aggregation. Options include:
" |
mse |
If |
shrink_fun |
Shrinkage function of the covariance matrix, shrink_estim (default) |
... |
Not used. |
A ((k^\ast+m) \times (k^\ast+m)
) symmetric matrix.
Di Fonzo, T. and Girolimetto, D. (2023), Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives, International Journal of Forecasting, 39, 1, 39-57. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.ijforecast.2021.08.004")}
Temporal framework:
teboot()
,
tebu()
,
telcc()
,
temo()
,
terec()
,
tetd()
,
tetools()
# (7 x 70) in-sample residuals matrix (simulated), agg_order = 4
res <- rnorm(70)
cov1 <- tecov("ols", agg_order = 4) # OLS methods
cov2 <- tecov("str", agg_order = 4) # STRC methods
cov3 <- tecov("wlsv", agg_order = 4, res = res) # WLSv methods
cov4 <- tecov("wlsh", agg_order = 4, res = res) # WLSh methods
cov5 <- tecov("acov", agg_order = 4, res = res) # ACOV methods
cov6 <- tecov("strar1", agg_order = 4, res = res) # STRAR1 methods
cov7 <- tecov("har1", agg_order = 4, res = res) # HAR1 methods
cov8 <- tecov("sar1", agg_order = 4, res = res) # SAR1 methods
cov9 <- tecov("shr", agg_order = 4, res = res) # SHR methods
cov10 <- tecov("sam", agg_order = 4, res = res) # SAM methods
# Custom covariance matrix
tecov.ols2 <- function(comb, x) diag(x)
tecov(comb = "ols2", x = 7) # == tecov("ols", agg_order = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.