Description Usage Arguments Value Author(s) References Examples
This function simulates random Sierpinski-Carpets using a constant probability for the computation of the Bernoulli random variables placed in the matrix. An additional parameter determines the number of ramifications in this procedure.
1 |
p |
A numeric value between 0 and 1 indicating the probability of success (0 or 1) for the Bernoulli random variables of the matrix. |
N |
An integer value indicating the number of ramifications used for simulating the Sierpinski-Carpet. |
sierp |
An optional logical parameter: if |
This function creates a matrix of size 3^N x 3^N
containing simulated zeros and ones from Bernoulli distribution under given probability p
.
Philipp Hermann; Jozef Kiselak; Milan Stehlik\ philipp.hermann@jku.at; jozef.kiselak@upjs.sk; mlnstehlik@gmail.com
Hermann, P., Mrkvicka, T., Mattfeldt, T., Minarova, M., Helisova, K., Nicolis, O., Wartner, F., and Stehlik, M. (2015). Fractal and stochastic Geometry Inference for Breast Cancer: a Case Study with Random Fractal Models and Quermass-Interaction Process. Statistics in Medicine, 34(18), 2636-2661. doi: 10.1002/sim.6497.
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.