e2_Monte_Carlo_EM: Internal: e2_Monte_Carlo_EM

View source: R/HS.R

e2_Monte_Carlo_EMR Documentation

Internal: e2_Monte_Carlo_EM

Description

Internal: e2_Monte_Carlo_EM

Usage

e2_Monte_Carlo_EM(
  Betah,
  Sigmah,
  kappa0 = kappa0,
  kappastar0 = kappastar0,
  sigma20 = sigma20,
  s20 = s20,
  m,
  K,
  a1 = a1,
  a2 = a2,
  d1 = d1,
  d2 = d2,
  c1 = c1,
  c2 = c2,
  e2 = e2,
  snpnames,
  genename
)

Arguments

Betah

A matrix of dimension K*m represents the regression coefficients. Each row of this matrix includes the regression coefficients for each trait.

Sigmah

A symmetric block-diagonal matrix of dimension K*m is used. Each block of this matrix shows a positive definite covariance matrix which is an estimated covariance matrix of each trait.

kappa0

Initial value for kappa.

kappastar0

Initial value for kappastar.

sigma20

Initial value for sigma2.

s20

Initial value for s2.

m

Number of variables in the group.

K

Number of traits.

a1, a2

Hyperparameters of kappa. Default is a1=0.1 and a2=0.1.

d1, d2

Hyperparameters of sigma2. Default is d1=0.1 and d2=0.1.

c1, c2

Hyperparameters of kappastar. Default is c1=0.1 and c2=0.1.

e2

Initial value for doing Monte Carlo EM algorithm to estimate hyperparameter of s2.

snpnames

Names of variables for the group.

genename

Name of group.


GCPBayes documentation built on May 29, 2024, 3:30 a.m.