Nothing
#' @export
#' @title An Example Illustrating Endogenous Equilibrium Interest Rates in a (Timeline) Transitional Equilibrium Path
#' @aliases gemIntertemporal_EndogenousEquilibriumInterestRate
#' @description This example illustrates (endogenous) equilibrium primitive interest rates in a transitional equilibrium path,
#' which is an intertemporal path distinct from a steady-state equilibrium.
#' Assume that the velocity of money is equal to one, that is, money circulates once per period.
#'
#' The interest rate calculated here is adjusted from the nominal interest rate based on the growth rate of the money supply,
#' which is equal to the nominal interest rate when the money stock remains unchanged.
#' We refer to this kind of interest rate as the primitive interest rate,
#' which usually differs from the real interest rate obtained by adjusting the nominal rate based on the inflation rate.
#'
#' There are three types of economic agents in the model: firms, a laborer, and a money owner.
#' Suppose the laborer and the money owner need to use money to buy products, and firms need to use money to buy products and labor.
#' Formally, the money owner borrows money from himself and pays interest to himself.
#' @param ... arguments to be passed to the function sdm2.
#' @examples
#' \donttest{
#' eis <- 0.8 # the elasticity of intertemporal substitution
#' Gamma.beta <- 0.8 # the subjective discount factor
#' gr <- 0 # the steady-state growth rate
#' np <- 20 # the number of economic periods
#'
#' f <- function(ir = rep(0.25, np - 1), return.ge = FALSE,
#' y1 = 10, # the product supply in the first period
#' alpha.firm = rep(2, np - 1) # the efficiency parameters of firms
#' ) {
#' n <- 2 * np # the number of commodity kinds
#' m <- np + 1 # the number of agent kinds
#'
#' names.commodity <- c(
#' paste0("prod", 1:np),
#' paste0("lab", 1:(np - 1)),
#' "money"
#' )
#' names.agent <- c(
#' paste0("firm", 1:(np - 1)),
#' "laborer", "moneyOwner"
#' )
#'
#' # the exogenous supply matrix.
#' S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
#' S0Exg[paste0("lab", 1:(np - 1)), "laborer"] <- 100 * (1 + gr)^(0:(np - 2))
#' S0Exg["money", "moneyOwner"] <- 100
#' S0Exg["prod1", "laborer"] <- y1
#'
#' # the output coefficient matrix.
#' B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
#' for (k in 1:(np - 1)) {
#' B[paste0("prod", k + 1), paste0("firm", k)] <- 1
#' }
#'
#' dstl.firm <- list()
#' for (k in 1:(np - 1)) {
#' dstl.firm[[k]] <- node_new(
#' "prod",
#' type = "FIN", rate = c(1, ir[k]),
#' "cc1", "money"
#' )
#' node_set(dstl.firm[[k]], "cc1",
#' type = "CD", alpha = alpha.firm[k], beta = c(0.5, 0.5),
#' paste0("prod", k), paste0("lab", k)
#' )
#' }
#'
#' dst.laborer <- node_new(
#' "util",
#' type = "CES", es = eis,
#' alpha = 1, beta = prop.table(Gamma.beta^(1:np)),
#' paste0("cc", 1:(np - 1)), paste0("prod", np)
#' )
#'
#' for (k in 1:(np - 1)) {
#' node_set(dst.laborer, paste0("cc", k),
#' type = "FIN", rate = c(1, ir[k]),
#' paste0("prod", k), "money"
#' )
#' }
#'
#' dst.moneyOwner <- node_new(
#' "util",
#' type = "CES", es = eis,
#' alpha = 1, beta = prop.table(Gamma.beta^(1:(np - 1))),
#' paste0("cc", 1:(np - 1))
#' )
#' for (k in 1:(np - 1)) {
#' node_set(dst.moneyOwner, paste0("cc", k),
#' type = "FIN", rate = c(1, ir[k]),
#' paste0("prod", k), "money"
#' )
#' }
#'
#' ge <- sdm2(
#' A = c(dstl.firm, dst.laborer, dst.moneyOwner),
#' B = B,
#' S0Exg = S0Exg,
#' names.commodity = names.commodity,
#' names.agent = names.agent,
#' numeraire = "prod1",
#' policy = makePolicyHeadTailAdjustment(gr = gr, np = np, type = c("tail"))
#' )
#'
#' tmp <- rowSums(ge$SV)
#' ts.exchange.value <- tmp[paste0("prod", 1:(np - 1))] + tmp[paste0("lab", 1:(np - 1))]
#' ir.new <- ts.exchange.value[1:(np - 2)] / ts.exchange.value[2:(np - 1)] - 1
#' ir.new <- pmax(1e-6, ir.new)
#' ir.new[np - 1] <- ir.new[np - 2]
#'
#' ir <- c(ir * ratio_adjust(ir.new / ir, 0.3))
#' cat("ir: ", ir, "\n")
#'
#' if (return.ge) {
#' ge$ts.exchange.value <- ts.exchange.value
#' return(ge)
#' } else {
#' return(ir)
#' }
#' }
#'
#' ## Calculate equilibrium interest rates.
#' ## Warning: Running the program below takes about several minutes.
#' # mat.ir <- iterate(rep(0.1, np - 1), f, tol = 1e-4)
#' # sserr(eis, Gamma.beta, gr, prepaid = TRUE)
#'
#' ## Below are the calculated equilibrium interest rates.
#' ir <- rep(0.25, np - 1)
#' ir[1:14] <- c(0.4301, 0.3443, 0.3007, 0.2776, 0.2652, 0.2584, 0.2546,
#' 0.2526, 0.2514, 0.2508, 0.2504, 0.2502, 0.2501, 0.2501)
#'
#' ge <- f(ir, TRUE)
#'
#' plot(ge$z[1:(np - 1)], type = "o")
#' ge$ts.exchange.value[1:(np - 2)] / ge$ts.exchange.value[2:(np - 1)] - 1
#' ir
#'
#' ## Calculate the growth rate of the money supply and the equilibrium nominal
#' ## interest rate when the current price of the product remains constant.
#' price.money <- 1 / c(1, cumprod(ir + 1))
#' currentPrice.prod <- ge$p[1:np] / price.money
#' gr.moneySupply <- unname(growth_rate(1 / currentPrice.prod))
#' (ir + 1) * (gr.moneySupply[2:np] + 1) - 1
#'
#' ## the corresponding sequential model with the same steady-state equilibrium.
#' np <- 5
#' ge.ss <- f(return.ge = TRUE, y1 = 128)
#'
#' dividend.rate <- ir <- sserr(eis, Gamma.beta, prepaid = TRUE)
#'
#' dst.firm <- node_new("prod",
#' type = "FIN", rate = c(1, ir, (1 + ir) * dividend.rate),
#' "cc1", "money", "equity.share"
#' )
#' node_set(dst.firm, "cc1",
#' type = "CD",
#' alpha = 2, beta = c(0.5, 0.5),
#' "prod", "lab"
#' )
#'
#' dst.laborer <- node_new("util",
#' type = "FIN", rate = c(1, ir),
#' "prod", "money"
#' )
#'
#' dst.moneyOwner <- node_new("util",
#' type = "FIN", rate = c(1, ir),
#' "prod", "money"
#' )
#'
#' ge2 <- sdm2(
#' A = list(dst.firm, dst.laborer, dst.moneyOwner),
#' B = matrix(c(
#' 1, 0, 0,
#' 0, 0, 0,
#' 0, 0, 0,
#' 0, 0, 0
#' ), 4, 3, TRUE),
#' S0Exg = matrix(c(
#' NA, NA, NA,
#' NA, 100, NA,
#' NA, NA, 100,
#' NA, 100, NA
#' ), 4, 3, TRUE),
#' names.commodity = c(
#' "prod", "lab", "money", "equity.share"
#' ),
#' names.agent = c("firm", "laborer", "moneyOwner"),
#' numeraire = "prod"
#' )
#'
#' ge2$p
#' ge.ss$z[np - 1]
#' ge2$z
#' ge.ss$D[paste0("prod", np - 1), c("laborer", "moneyOwner")]
#' ge2$D
#'
#' ## a technology shock.
#' ## Warning: Running the program below takes about several minutes.
#' # np <- 50
#' # f2 <- function(x) {
#' # f(
#' # ir = x, return.ge = FALSE,
#' # y1 = 128, alpha.firm = {
#' # tmp <- rep(2, np - 1)
#' # tmp[25] <- 1.8
#' # tmp
#' # }
#' # )
#' # }
#' #
#' # mat.ir <- iterate(rep(0.25, np - 1), f2, tol = 1e-4)
#' # tail(mat.ir, 1) # the equilibrium interest rates
#'
#' ## Calculate equilibrium interest rates.
#' ## Warning: Running the program below takes about several minutes.
#' # np <- 20
#' # gr <- 0.03
#' # mat.ir <- iterate(rep(0.1, np - 1), f, tol = 1e-4)
#' # sserr(eis, Gamma.beta, gr, prepaid = TRUE)
#' }
gemIntertemporal_EndogenousEquilibriumInterestRate <- function(...) sdm2(...)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.