GFA: Group Factor Analysis
Version 1.0.1

Factor analysis implementation for multiple data sources, i.e., for groups of variables. The whole data analysis pipeline is provided, including functions and recommendations for data normalization and model definition, as well as missing value prediction and model visualization. The model group factor analysis (GFA) is inferred with Gibbs sampling, and it has been presented originally by Virtanen et al. (2012), and extended in Klami et al. (2015) and Bunte et al. (2016) ; for details, see the citation info.

AuthorEemeli Leppaaho [aut, cre], Seppo Virtanen [aut], Muhammad Ammad-ud-din [ctb], Suleiman A Khan [ctb], Tommi Suvitaival [ctb], Inka Saarinen [ctb], Samuel Kaski [ctb]
Date of publication2017-03-17 13:01:18 UTC
MaintainerEemeli Leppaaho <eemeli.leppaaho@aalto.fi>
LicenseMIT + file LICENSE
Version1.0.1
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("GFA")

Getting started

Package overview

Popular man pages

GFA-package: Group factor analysis.
informativeNoisePrior: Informative noise residual prior
normalizeData: Normalize data to be used by GFA
reconstruction: Full data reconstruction based on posterior samples
robustComponents: Robust GFA components
sequentialGfaPrediction: Sequential prediction of new samples from observed data views...
visualizeComponents: Visualize GFA components
See all...

All man pages Function index File listing

Man pages

getDefaultOpts: A function for generating the default priors of GFA model
gfa: Gibbs sampling for group factor analysis
GFA-package: Group factor analysis.
informativeNoisePrior: Informative noise residual prior
normalizeData: Normalize data to be used by GFA
reconstruction: Full data reconstruction based on posterior samples
robustComponents: Robust GFA components
sequentialGfaPrediction: Sequential prediction of new samples from observed data views...
undoNormalizeData: A function for returning predictions into the original data...
visualizeComponents: Visualize GFA components

Functions

GFA Man page
GFA-package Man page
checkConvergence Source code
getDefaultOpts Man page Source code
gfa Man page Source code
informativeNoisePrior Man page Source code
initializeParameters Source code
initializePosterior Source code
matchComponents Source code
normalizeData Man page Source code
reconstruction Man page Source code
robustComponents Man page Source code
sequentialGfaPrediction Man page Source code
undoNormalizeData Man page Source code
updateBernoulli Source code
updateGamma Source code
updateNormal Source code
updateSpikeAndSlab Source code
updateTau Source code
visualizeComponents Man page Source code

Files

inst
inst/CITATION
NAMESPACE
demo
demo/GFAdream.R
demo/00Index
demo/GFAexample.R
demo/GFApipeline.R
NEWS
R
R/robustComponents.R
R/normalizeData.R
R/sequentialGfaPrediction.R
R/reconstruction.R
R/GFA.R
R/informativeNoisePrior.R
R/visualizeComponents.R
MD5
DESCRIPTION
man
man/GFA-package.Rd
man/informativeNoisePrior.Rd
man/reconstruction.Rd
man/undoNormalizeData.Rd
man/robustComponents.Rd
man/getDefaultOpts.Rd
man/normalizeData.Rd
man/visualizeComponents.Rd
man/sequentialGfaPrediction.Rd
man/gfa.Rd
LICENSE
GFA documentation built on May 19, 2017, 9:57 a.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.