GGMncv: Gaussian Graphical Models with Nonconvex Regularization

Estimate Gaussian graphical models with nonconvex penalties <doi:10.31234/osf.io/ad57p>, including the atan Wang and Zhu (2016) <doi:10.1155/2016/6495417>, seamless L0 Dicker, Huang, and Lin (2013) <doi:10.5705/ss.2011.074>, exponential Wang, Fan, and Zhu <doi:10.1007/s10463-016-0588-3>, smooth integration of counting and absolute deviation Lv and Fan (2009) <doi:10.1214/09-AOS683>, logarithm Mazumder, Friedman, and Hastie (2011) <doi:10.1198/jasa.2011.tm09738>, Lq, smoothly clipped absolute deviation Fan and Li (2001) <doi:10.1198/016214501753382273>, and minimax concave penalty Zhang (2010) <doi:10.1214/09-AOS729>. There are also extensions for computing variable inclusion probabilities, multiple regression coefficients, and statistical inference <doi:10.1214/15-EJS1031>.

Getting started

Package details

AuthorDonald Williams [aut, cre]
MaintainerDonald Williams <drwwilliams@ucdavis.edu>
LicenseGPL-2
Version2.0.0
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("GGMncv")

Try the GGMncv package in your browser

Any scripts or data that you put into this service are public.

GGMncv documentation built on Nov. 16, 2020, 9:07 a.m.