Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----srr, eval = FALSE, echo = FALSE------------------------------------------
# #' @srrstats {G1.0}
# #' @srrstats {G1.1}
# #' @srrstats {G1.3}
## ----message=F, warning=F-----------------------------------------------------
library(GLMMcosinor)
cosinor_model <- cglmm(
vit_d ~ X + amp_acro(time, period = 12, group = "X"),
data = vitamind
)
## ----message=F, warning=F-----------------------------------------------------
head(cosinor_model$newdata)
## ----warning=F, message=F-----------------------------------------------------
cglmm(
formula = vit_d ~ amp_acro(time, period = 12),
data = vitamind,
family = gaussian
)
## ----message=F, warning=F-----------------------------------------------------
cglmm(
vit_d ~ X + amp_acro(time, period = 12, group = "X"),
data = vitamind
)
## ----message=F, warning=F-----------------------------------------------------
cglmm(
vit_d ~ 0 + X + amp_acro(time,
period = 12,
group = "X"
),
data = vitamind
)
## -----------------------------------------------------------------------------
cosinor_model <- cglmm(
vit_d ~ 0 + X + amp_acro(time,
period = 12,
group = "X"
),
data = vitamind
)
autoplot(cosinor_model, predict.ribbon = FALSE)
## ----echo=F-------------------------------------------------------------------
withr::with_seed(
50,
{
testdata_simple <- simulate_cosinor(
1000,
n_period = 2,
mesor = 5,
amp = 2,
acro = 1,
beta.mesor = 4,
beta.amp = 1,
beta.acro = 0.5,
family = "poisson",
period = 12,
n_components = 1,
beta.group = TRUE
)
}
)
## ----eval=F-------------------------------------------------------------------
# testdata_simple <- simulate_cosinor(
# 1000,
# n_period = 2,
# mesor = 5,
# amp = 2,
# acro = 1,
# beta.mesor = 4,
# beta.amp = 1,
# beta.acro = 0.5,
# family = "poisson",
# period = 12,
# n_components = 1,
# beta.group = TRUE
# )
## ----message=F, warning=F-----------------------------------------------------
object <- cglmm(
Y ~ group + amp_acro(times, period = 12, group = "group"),
data = testdata_simple, family = poisson()
)
summary(object)
## -----------------------------------------------------------------------------
test_cosinor_levels(object, x_str = "group", param = "amp")
## ----echo=F-------------------------------------------------------------------
withr::with_seed(
50,
{
testdata_poisson <- simulate_cosinor(100,
n_period = 2,
mesor = 7,
amp = c(0.1, 0.5),
acro = c(1, 1),
beta.mesor = 4.4,
beta.amp = c(0.1, 0.46),
beta.acro = c(0.5, -1.5),
family = "poisson",
period = c(12, 6),
n_components = 2,
beta.group = TRUE
)
}
)
## ----eval=F-------------------------------------------------------------------
# testdata_poisson <- simulate_cosinor(100,
# n_period = 2,
# mesor = 7,
# amp = c(0.1, 0.5),
# acro = c(1, 1),
# beta.mesor = 4.4,
# beta.amp = c(0.1, 0.46),
# beta.acro = c(0.5, -1.5),
# family = "poisson",
# period = c(12, 6),
# n_components = 2,
# beta.group = TRUE
# )
## -----------------------------------------------------------------------------
cosinor_model <- cglmm(
Y ~ group + amp_acro(times,
period = c(12, 6),
n_components = 2,
group = "group"
),
data = testdata_poisson,
family = poisson()
)
test_cosinor_levels(
cosinor_model,
x_str = "group",
param = "amp",
component_index = 1
)
## -----------------------------------------------------------------------------
test_cosinor_components(
cosinor_model,
x_str = "group",
param = "acr",
level_index = 1
)
## ----eval=F-------------------------------------------------------------------
# cbind(predictions = predict(cosinor_model, type = "response"), testdata_poisson)
## ----echo=F-------------------------------------------------------------------
head(cbind(
predictions = predict(cosinor_model, type = "response"),
testdata_poisson
))
## ----message=F, warning=F-----------------------------------------------------
autoplot(cosinor_model, superimpose.data = TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.