Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, message=FALSE-----------------------------------------------------
library(GLMMcosinor)
library(dplyr)
library(ggplot2)
## -----------------------------------------------------------------------------
f_sample_id <- function(id_num,
n = 30,
mesor,
amp,
acro,
family = "gaussian",
sd = 0.2,
period,
n_components,
beta.group = TRUE) {
data <- simulate_cosinor(
n = n,
mesor = mesor,
amp = amp,
acro = acro,
family = family,
sd = sd,
period = period,
n_components = n_components
)
data$subject <- id_num
data
}
dat_mixed <- do.call(
"rbind",
lapply(1:30, function(x) {
f_sample_id(
id_num = x,
mesor = rnorm(1, mean = 0, sd = 1),
amp = rnorm(1, mean = 3, sd = 0.5),
acro = rnorm(1, mean = 1.5, sd = 0.2),
period = 24,
n_components = 1
)
})
)
dat_mixed$subject <- as.factor(dat_mixed$subject)
## ----echo=FALSE---------------------------------------------------------------
withr::with_seed(
50,
{
dat_mixed <- do.call(
"rbind",
lapply(1:30, function(x) {
f_sample_id(
id_num = x,
mesor = rnorm(1, mean = 0, sd = 1),
amp = rnorm(1, mean = 3, sd = 0.5),
acro = rnorm(1, mean = 1.5, sd = 0.2),
period = 24,
n_components = 1
)
})
)
dat_mixed$subject <- as.factor(dat_mixed$subject)
}
)
## -----------------------------------------------------------------------------
ggplot(dat_mixed, aes(times, Y, col = subject)) +
geom_point() +
geom_line() +
theme_bw()
## ----echo=FALSE---------------------------------------------------------------
withr::with_seed(42, {
mixed_mod <- cglmm(
Y ~ amp_acro(times, n_components = 1, period = 24) +
(1 + amp_acro1 | subject),
data = dat_mixed
)
})
## -----------------------------------------------------------------------------
mixed_mod$formula
## -----------------------------------------------------------------------------
autoplot(mixed_mod, superimpose.data = TRUE)
## -----------------------------------------------------------------------------
summary(mixed_mod)
## -----------------------------------------------------------------------------
ggplot(cbind(dat_mixed, pred = predict(mixed_mod))) +
geom_point(aes(x = times, y = Y, col = subject)) +
geom_line(aes(x = times, y = pred, col = subject))
## -----------------------------------------------------------------------------
fixed_effects_mod <- cglmm(
Y ~ amp_acro(times, n_components = 1, period = 24),
data = dat_mixed
)
AIC(fixed_effects_mod$fit)
AIC(mixed_mod$fit)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.