Random.Start | R Documentation |
Random orthogonal rotation to use as Tmat matrix to start GPFRSorth, GPFRSoblq, GPForth, or GPFoblq.
Random.Start(k)
k |
An integer indicating the dimension of the square matrix. |
The random start function produces an orthogonal matrix with columns of length one based on the QR decompostion. This randomization procedures follows the logic of Stewart(1980) and Mezzari(2007), as of GPArotation version 2024.2-1.
An orthogonal matrix.
Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert. Additional input from Yves Rosseel.
Stewart, G. W. (1980). The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators. SIAM Journal on Numerical Analysis, 17(3), 403–409. http://www.jstor.org/stable/2156882
Mezzadri, F. (2007). How to generate random matrices from the classical compact groups. Notices of the American Mathematical Society, 54(5), 592–604. https://arxiv.org/abs/math-ph/0609050
GPFRSorth
,
GPFRSoblq
,
GPForth
,
GPFoblq
,
rotations
# Generate a random ortogonal matrix of dimension 5 x 5
Random.Start(5)
# function for generating orthogonal or oblique random matrix
Random.Start <- function(k = 2L,orthogonal=TRUE){
mat <- matrix(rnorm(k*k),k)
if (orthogonal){
qr.out <- qr(matrix(rnorm(k * k), nrow = k, ncol = k))
Q <- qr.Q(qr.out)
R <- qr.R(qr.out)
R.diag <- diag(R)
R.diag2 <- R.diag/abs(R.diag)
ans <- t(t(Q) * R.diag2)
ans
}
else{
ans <- mat %*% diag(1/sqrt(diag(crossprod(mat))))
}
ans
}
data("Thurstone", package="GPArotation")
simplimax(box26,Tmat = Random.Start(3, orthogonal = TRUE))
simplimax(box26,Tmat = Random.Start(3, orthogonal = FALSE))
# covariance matrix is Phi = t(Th) %*% Th
rms <- Random.Start(3, FALSE)
t(rms) %*% rms # covariance matrix because oblique rms
rms <- Random.Start(3, TRUE)
t(rms) %*% rms # identity matrix because orthogonal rms
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.