CH | R Documentation |
This function computes the Confluent Hypergeometric correlation function given a distance matrix. The Confluent Hypergeometric correlation function is given by
C(h) = \frac{\Gamma(\nu+\alpha)}{\Gamma(\nu)}
\mathcal{U}\left(\alpha, 1-\nu, \biggr(\frac{h}{\beta}\biggr)^2 \right),
where \alpha
is the tail decay parameter. \beta
is the range parameter.
\nu
is the smoothness parameter. \mathcal{U}(\cdot)
is the confluent hypergeometric
function of the second kind. Note that this parameterization of the CH covariance
is different from the one in Ma and Bhadra (2023). For details about this covariance,
see Ma and Bhadra (2023; \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2022.2027775")}).
CH(d, range, tail, nu)
d |
a matrix of distances |
range |
a numerical value containing the range parameter |
tail |
a numerical value containing the tail decay parameter |
nu |
a numerical value containing the smoothness parameter |
a numerical matrix
Pulong Ma mpulong@gmail.com
GPBayes-package, GaSP
, gp, matern
, kernel
, ikernel
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.