gp.fisher | R Documentation |
This function computes the Fisher information matrix I(\sigma^2, \boldsymbol \theta)
for a
Gaussian process model y(\cdot) \sim \mathcal{GP}(h^\top(\mathbf{x})\mathbf{b}, \sigma^2 c(\cdot, \cdot) )
, where
c(\mathbf{x}_1, \mathbf{x}_2) = r(\mathbf{x}_1, \mathbf{x}_2) + \tau^2\mathbf{1}(\mathbf{x}_1=\mathbf{x}_2)
with correlation function
r(\cdot, \cdot)
and nugget parameter \tau^2
; \mathbf{b}
is a vector of regression coefficients,
\sigma^2
is the variance parameter (or partial sill).
Given n
data points that are assumed to be realizations from the GP model,
the standard likelihood is defined as
L(\mathbf{b}, \sigma^2, \boldsymbol \theta; \mathbf{y}) = \mathcal{N}_n(\mathbf{H}\mathbf{b}, \sigma^2 (\mathbf{R} + \tau^2\mathbf{I}) ),
where \mathbf{y}:=(y(\mathbf{x}_1), \ldots, y(\mathbf{x}_n))^\top
is a vector of n
observations.
\mathbf{H}
is a matrix of covariates, \boldsymbol \theta
contains correlation
parameters and nugget parameter, \mathbf{R}
denotes the n
-by-n
correlation matrix.
The integrated likelihood is defined as
L^{I}(\sigma^2, \boldsymbol \theta; \mathbf{y}) = \int L(\mathbf{b}, \sigma^2, \boldsymbol \theta; \mathbf{y}) \pi^{R}(\mathbf{b} \mid \sigma^2, \boldsymbol \theta) d \mathbf{b},
where \pi^{R}(\mathbf{b} \mid \sigma^2, \boldsymbol \theta)=1
is the conditional Jeffreys-rule (or reference prior)
in the model with the above standard likelihood when (\sigma^2, \boldsymbol \theta)
is assumed to be known.
For the Matérn class, current implementation only computes Fisher information matrix
for variance parameter \sigma^2
, range parameter \phi
, and nugget variance
parameter \tau^2
. That is, I(\sigma^2, \boldsymbol \theta) = I(\sigma^2, \phi, \tau^2)
.
For the Confluent Hypergeometric class, current implementation computes Fisher information matrix
for variance parameter \sigma^2
, range parameter \beta
, tail decay parameter \alpha
, smoothness parameter \nu
and nugget variance
parameter \tau^2
. That is, I(\sigma^2, \boldsymbol \theta) = I(\sigma^2, \beta, \alpha, \nu, \tau^2)
.
gp.fisher(
obj = NULL,
intloglik = FALSE,
formula = ~1,
input = NULL,
param = NULL,
cov.model = NULL,
dtype = "Euclidean"
)
obj |
a |
intloglik |
a logical value with default value |
formula |
an object of |
input |
a matrix including inputs in a GaSP |
param |
a list including values for regression parameters, covariance parameters, and nugget variance parameter. The specification of param should depend on the covariance model.
|
cov.model |
a list of two strings: family, form, where family indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. form indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form.
|
dtype |
a string indicating the type of distance:
|
a numerical matrix of Fisher information
Pulong Ma mpulong@gmail.com
GPBayes-package, GaSP
, gp
, kernel
, ikernel
,
n=100
input = seq(0, 20, length=n)
range = 1
tail = .5
nu = 1.5
sig2 = 1
nugget = 0.01
coeff = 0
par = list(range=range, tail=tail, nu=nu, sig2=sig2, nugget=nugget, coeff=coeff)
I = gp.fisher(formula=~1, input=input,
param=list(range=4, nugget=0.1,nu=2.5),
cov.model=list(family="CH", form="isotropic"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.