logLikFunc | R Documentation |
Computes and returns the log-likelihood value, the covariance matrix of latent process and covariance structure of a Gaussian Process Classification (GPC) model.
logLikFunc(par, f, Xf, covtype = "matern5_2", noise.var = 1e-6,
seed = NULL, MeanTransform = NULL, return.all = FALSE)
par |
vector contains the |
f |
vector of binary observations (+/-1) corresponding to the class labels. |
Xf |
a matrix representing the design of experiments. |
covtype |
a character string specifying the covariance structure for the latent GP. Default is |
noise.var |
nugget effect. Default is 1e-6. |
seed |
to fix the seed, default is |
MeanTransform |
optional character string specifying a transform of the latent process mean coef.m. If |
return.all |
an optional boolean. If |
logLik |
the log-likelihood. |
K |
the covariance matrix of latent process. |
cov.fun |
a DiceKriging object specifying the covariance structure. |
Morgane MENZ, Céline HELBERT, Victor PICHENY, François BACHOC. Contributors: Naoual SERRAJI.
Bachoc, F., Helbert, C. & Picheny, V. Gaussian process optimization with failures: classification and convergence proof. J Glob Optim 78, 483–506 (2020). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10898-020-00920-0")}
Botev, Z., Belzile, L. TruncatedNormal: Truncated Multivariate Normal and Student Distributions. R package version 2.2.2 https://cran.r-project.org/package=TruncatedNormal
Botev, Z. I. (2017), The normal law under linear restrictions:simulation and estimation via minimax tilting, Journal of the Royal Statistical Society, Series B, 79 (1), pp. 1-24.
Roustant, O., Ginsbourger, D. & Deville, Y. Contributors: Chevalier, C. , Richet, Y. DiceKriging: Kriging Methods for Computer Experiments. R package version 1.6.0. https://CRAN.R-project.org/package=DiceKriging.
# ------------
# A 1D example
# ------------
# Design of Experiments Xf and the corresponding signs f
Xf <- as.matrix(c(0.08, 0.27, 0.42, 0.65, 0.78, 0.84))
f <- c(1, -1, -1, 1, -1, -1)
# loglikelihood and covariance matrix at Xf
par <- c(coef.cov = 0.1, coef.m = 0)
result <- logLikFunc(par = par, f = f, Xf = Xf, return.all = TRUE)
K <- result$K
logLik <- result$logLik
print(logLik)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.