update | R Documentation |
Update a gpcm
object when one or many new observations are added.
## S3 method for class 'gpcm'
update(object, newf, newXf, newX.alreadyExist,
newnoise.var, covandmean.reestim=TRUE, multistart = 1, seed = NULL,
lower = NULL, upper = NULL, nsimu = 100, normalize = TRUE, ...)
object |
an object of |
newf |
a vector corresponding to the new binary observations (+/-1) at |
newXf |
a matrix with |
newX.alreadyExist |
Boolean: indicate whether the locations |
newnoise.var |
optional scalar, nugget effect at new observations. |
covandmean.reestim |
should the mean and covariance parameters be re-estimated? Default is |
multistart |
an optional integer indicating the number of initial points from which running the |
seed |
to fix the seed, default is |
lower |
(see below). |
upper |
|
nsimu |
an integer indicating the number of samples of the latent GP at observation points |
normalize |
a logical parameter indicating whether to normalize the input matrix |
... |
no other argument for this method |
Updated gpcm
object.
Morgane MENZ, Céline HELBERT, Victor PICHENY, François BACHOC. Contributors: Naoual SERRAJI.
Bachoc, F., Helbert, C. & Picheny, V. Gaussian process optimization with failures: classification and convergence proof. J Glob Optim 78, 483–506 (2020). \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10898-020-00920-0")}.
Kotecha, J. H., Djuric, P. M. (1999). Gibbs Sampling Approach For Generation of Truncated Multivariate Gaussian Random Variables. IEEE Computer Society, 1757–1760.
Wilhelm, S. tmvtnorm: Truncated Multivariate Normal and Student t Distribution. R package version 1.6. https://CRAN.R-project.org/package=tmvtnorm.
Roustant, O., Ginsbourger, D. & Deville, Y. Contributors: Chevalier, C. , Richet, Y. DiceKriging: Kriging Methods for Computer Experiments. R package version 1.6.0. https://CRAN.R-project.org/package=DiceKriging.
Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16, 1190–1208. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1137/0916069")}.
gpcm
# ----------------------------------
# A 1D example - sinusoidal function
# ----------------------------------
# Test function
sinusoidal_function <- function(x) {
sin(4 * pi * x)}
# Desing of Experiment Xf and the corresponding sign f
Xf <- as.matrix(c(0.07, 0.19, 0.42, 0.56, 0.81, 0.90))
f <- rep(1,length(Xf)); f[(sinusoidal_function(Xf)<0)]<- -1
# Builidng a GPC model
GPCmodel1 <- gpcm(f = f, Xf = Xf, coef.m=0, coef.cov=0.26)
print(GPCmodel1)
# New points added to the gpcm object.
newXf <- as.matrix(c(0.1,0.5,0.7, 0.95))
newf <- rep(1,length(newXf)); newf[(sinusoidal_function(newXf)<0)]<- -1
# Updating GPC model
NewGPCmodel <- update(object = GPCmodel1, newf = newf, newXf = newXf)
print(NewGPCmodel)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.