| kernel_sum | R Documentation |
Gaussian Kernel R6 class
Gaussian Kernel R6 class
R6Class object.
Object of R6Class with methods for fitting GP model.
GauPro::GauPro_kernel -> GauPro_kernel_sum
k1kernel 1
k2kernel 2
k1_param_lengthparam length of kernel 1
k2_param_lengthparam length of kernel 2
k1plparam length of kernel 1
k2plparam length of kernel 2
s2variance
s2_estIs s2 being estimated?
new()Initialize kernel
kernel_sum$new(k1, k2, useC = TRUE)
k1Kernel 1
k2Kernel 2
useCShould C code used? Not applicable for kernel sum.
k()Calculate covariance between two points
kernel_sum$k(x, y = NULL, params, ...)
xvector.
yvector, optional. If excluded, find correlation of x with itself.
paramsparameters to use instead of beta and s2.
...Not used
param_optim_start()Starting point for parameters for optimization
kernel_sum$param_optim_start(jitter = F, y)
jitterShould there be a jitter?
yOutput
param_optim_start0()Starting point for parameters for optimization
kernel_sum$param_optim_start0(jitter = F, y)
jitterShould there be a jitter?
yOutput
param_optim_lower()Lower bounds of parameters for optimization
kernel_sum$param_optim_lower()
param_optim_upper()Upper bounds of parameters for optimization
kernel_sum$param_optim_upper()
set_params_from_optim()Set parameters from optimization output
kernel_sum$set_params_from_optim(optim_out)
optim_outOutput from optimization
dC_dparams()Derivative of covariance with respect to parameters
kernel_sum$dC_dparams(params = NULL, C, X, C_nonug, nug)
paramsKernel parameters
CCovariance with nugget
Xmatrix of points in rows
C_nonugCovariance without nugget added to diagonal
nugValue of nugget
C_dC_dparams()Calculate covariance matrix and its derivative with respect to parameters
kernel_sum$C_dC_dparams(params = NULL, X, nug)
paramsKernel parameters
Xmatrix of points in rows
nugValue of nugget
dC_dx()Derivative of covariance with respect to X
kernel_sum$dC_dx(XX, X)
XXmatrix of points
Xmatrix of points to take derivative with respect to
s2_from_params()Get s2 from params vector
kernel_sum$s2_from_params(params)
paramsparameter vector
s2_estIs s2 being estimated?
print()Print this object
kernel_sum$print()
clone()The objects of this class are cloneable with this method.
kernel_sum$clone(deep = FALSE)
deepWhether to make a deep clone.
k1 <- Exponential$new(beta=1)
k2 <- Matern32$new(beta=2)
k <- k1 + k2
k$k(matrix(c(2,1), ncol=1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.