Nothing
#' @useDynLib GeDS
#' @importFrom Rcpp sourceCpp
#' @importFrom utils packageDescription
NULL
.onAttach <- function(libname, pkgname) {
#nice basic info
vers <- packageDescription("GeDS")[["Version"]]
packageStartupMessage("##################################################################\n",
"\n",
"This is GeDS version ", vers, ". \n",
"See ",
sQuote("package?GeDS"), " for a brief introduction.\n",
"Type ", sQuote("citation('GeDS')"), " to learn how to cite this package.\n",
"\n",
"Please report any issue or bug to the authors (See the description\n",
"file)\n",
"\n",
"##################################################################\n",
appendLF = TRUE)
return(TRUE)
}
################################################################################
################################################################################
################################### CrystalData ################################
################################################################################
################################################################################
#' @title Crystallographic Scattering Data
#' @name CrystalData
#' @aliases CrystalData10k CrystalData300k
#' @description
#' This dataset contains crystallographic measurements obtained from a particle
#' accelerator experiment. The measurements correspond to the function \eqn{F(Q)}
#' at various \eqn{Q} values, which are used to analyze the scattering properties
#' of an unknown crystalline material. The dataset is available in two versions
#' based on the precision of the measurements:
#' \itemize{
#' \item \code{CrystalData10k} (lower precision);
#' \item \code{CrystalData300k} (higher precision);
#' }
#' The goal of the experiment is to estimate \eqn{F(Q)} from noisy data using
#' a GeDS model, and subsequently compute its Fourier transform to gain some valuable
#' insights into the structure of the material.
#'
#' @format A \code{data.frame} with 1721 observations and 2 variables:
#' \itemize{
#' \item{\code{Q}}: The scattering vector, measured in inverse angstroms, \eqn{\text{Å}^{-1}};
#' \item{\code{FQ}}: The measured function \eqn{F(Q)}, given in arbitrary units (a.u.).
#' }
#' @usage data(CrystalData10k)
#' @usage data(CrystalData300k)
#' @source Unpublished data from a controlled particle accelerator experiment.
#' @examples \dontrun{
#' # Load the dataset (choose 10k or 300k version)
#' data('CrystalData10k')
#'
#' # Fit a GeDS/GeDSboost model and compare how well the intensity peaks are captured
#' Gmod <- NGeDS(F_Q ~ f(Q), data = CrystalData10k, phi = 0.999, q = 3)
#' # for CrystalData300k set int.knots_init = 1, phi = 0.999, q = 4, instead
#' Gmodboost <- NGeDSboost(F_Q ~ f(Q), data = CrystalData10k, phi = 0.9975, q = 4)
#'
#' par(mfrow = c(1,2))
#' plot(Gmod, n = 2)
#' plot(Gmodboost, n = 2)
#' }
#'
#' @docType data
NULL
################################################################################
################################################################################
################################### BaFe2As2 ###################################
################################################################################
################################################################################
#' @title Barium-Ferrum-Arsenide Powder Diffraction Data
#' @name BaFe2As2
#' @description
#' This dataset contains the results of a neutron diffraction experiment on
#' Barium-Ferrum-Arsenide (\eqn{\mathrm{Ba Fe_2 As_2}}) powder carried out by
#' Kimber et al. (2009) and used in Kaishev et al. (2016). The neutron
#' diffraction intensity was measured at 1,151 different dispersion angles in
#' order to model the diffraction profile.
#'
#' @format A \code{data.frame} with 1151 cases and 2 variables:
#' \itemize{
#' \item \code{angle}: the dispersion angle, viewed as the independent variable.
#' \item \code{intensity}: the neutron diffraction intensity, viewed as the response
#' variable.
#' }
#' @usage data(BaFe2As2)
#' @source \href{https://openaccess.city.ac.uk/12418/}{openaccess.city.ac.uk}
#' @references
#' Kimber, S.A.J., Kreyssig, A., Zhang, Y.Z., Jeschke, H.O., Valenti, R.,
#' Yokaichiya, F., Colombier, E., Yan, J., Hansen, T.C., Chatterji, T.,
#' McQueeney, R.J., Canfield, P.C., Goldman, A.I. and Argyriou, D.N. (2009).
#' Similarities between structural distortions under pressure and chemical
#' doping in superconducting \eqn{\mathrm{Ba Fe_2 As_2}}. \emph{Nat Mater},
#' \strong{8}, 471--475.
#'
#' Kaishev, V.K., Dimitrova, D.S., Haberman, S. and Verrall, R.J. (2016).
#' Geometrically designed, variable knot regression splines.
#' \emph{Computational Statistics}, \strong{31}, 1079--1105. \cr
#' DOI: \doi{10.1007/s00180-015-0621-7}
#' @examples \dontrun{
#' # to load the data
#' data('BaFe2As2')
#'
#' # fit a GeDS regression and produce a simple plot of the result. See ?NGeDS
#' # c.f. Kaishev et al. (2016), section 4.2
#' (Gmod <- NGeDS(intensity ~ f(angle), data = BaFe2As2, beta = 0.6, phi = 0.99,
#' q = 3, show.iters = T))
#' plot(Gmod)
#' }
#'
#' @docType data
NULL
################################################################################
################################################################################
################################## coalMining ##################################
################################################################################
################################################################################
#' @title Coal Mining Disasters Data
#' @name coalMining
#' @description
#' A dataset with 112 entries containing annual numbers of accidents due to
#' disasters in British coal mines for years from 1850 to 1962, considered in
#' Carlin et al. (1992) and also in Eilers and Marx (1996).
#'
#' @format A \code{data.frame} with 112 entries, corresponding to the
#' years from 1850 to 1962. Each entry has:
#' \itemize{
#' \item \code{accidents}: number of severe accidents that have occurred each year.
#' \item \code{years}: year during which the accidents occurred.
#' }
#' @usage data(coalMining)
#' @source \url{https://people.reed.edu/~jones/141/Coal.html}
#' @references
#' Carlin, B.P., Gelfand, A.E. and Smith, A.F.M. (1992).
#' Hierarchical Bayesian analysis of changepoint problems.
#' \emph{Applied Statistics}, \strong{41}(2), 389--405.
#'
#' Eilers, P.H.C. and Marx, B.D. (1996). Flexible Smoothing with B-splines
#' and Penalties. \emph{Statistical Science}, \strong{11}(2), 89--121.
#'
#' @docType data
NULL
################################################################################
################################################################################
################################# EWmortality ##################################
################################################################################
################################################################################
#' @title Death Counts in England and Wales
#' @name EWmortality
#' @description
#' The dataset consists of information about the mortality of the English and
#' Welsh male population aggregated over the years 2000, 2001 and 2002.
#'
#' @format A \code{data.frame} with 109 entries and 3 variables: \code{Age},
#' \code{Deaths} and \code{Exposure}. \code{Exposure} is a mid-year estimate of
#' the population exposed to risk.
#' @usage data(EWmortality)
#'
#' @docType data
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.