set.seed(1) knitr::opts_chunk$set(fig.width = 8, fig.height = 6)
The logistic growth model is given by dN/dt = rN(1-N/K)
where
N
is the number (density) of indviduals at time t
,
K
is the carrying capacity of the population,
r
is the intrinsic growth rate of the population.
We assume r=b-d
where
b
is the per capita p.c. birth rate and
d
is the p.c. death rate.
This model consists of two reaction channels,
N ---b---> N + N N ---d'---> 0
where d'=d+(b-d)N/K
. The propensity functions are a_1=bN
and a_2=d'N
.
Load package
library(GillespieSSA)
Define parameters
parms <- c(b = 2, d = 1, K = 1000) # Parameters tf <- 10 # Final time simName <- "Logistic growth"
Define initial state vector
x0 <- c(N = 500)
Define state-change matrix
nu <- matrix(c(+1, -1),ncol = 2)
Define propensity functions
a <- c("b*N", "(d+(b-d)*N/K)*N")
Run simulations with the Direct method
set.seed(1) out <- ssa( x0 = x0, a = a, nu = nu, parms = parms, tf = tf, method = ssa.d(), simName = simName, verbose = FALSE, consoleInterval = 1 ) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
Run simulations with the Explict tau-leap method
set.seed(1) out <- ssa( x0 = x0, a = a, nu = nu, parms = parms, tf = tf, method = ssa.etl(tau = .03), simName = simName, verbose = FALSE, consoleInterval = 1 ) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
Run simulations with the Binomial tau-leap method
set.seed(1) out <- ssa( x0 = x0, a = a, nu = nu, parms = parms, tf = tf, method = ssa.btl(f = 5), simName = simName, verbose = FALSE, consoleInterval = 1 ) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
Run simulations with the Optimized tau-leap method
set.seed(1) out <- ssa( x0 = x0, a = a, nu = nu, parms = parms, tf = tf, method = ssa.otl(), simName = simName, verbose = FALSE, consoleInterval = 1 ) ssa.plot(out, show.title = TRUE, show.legend = FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.