| hbstm.fit | R Documentation |
This is the basic computing engine that hbstm uses to fit Hierarchical Bayesian Space Time models. In general, this should not be used directly, unless by experienced users.
hbstm.fit(HBSTM,nIter,nBurn,time,timerem,plots,posterior,save)
HBSTM |
An object of class |
nIter |
Number of Gibbs Sampling iterations. Default value is 1000. |
nBurn |
Number of burn-in samples. This number of samples will be discarded before making any inference. Default value is the 20 percent of nIter. |
time |
A |
timerem |
A |
plots |
A |
.
posterior |
A |
save |
A |
The save argument is a "character" that can have any of the following options:
-"all": Save an object of class Parameters.
-"Mu": Save an object of class Mu.
-"Mt": Save an object of class Mt.
-"Xt": Save an object of class Xt.
hbstm.fit returns an object of class HBSTM
Pilar Munyoz and Alberto Lopez Moreno
Overview: HBSTM-package
Classes : HBSTM,Parameters,Mu,Mt,Xt,Autoregressive,Seas,SpatParam,VectSubdiag,
Hyperpriors,Mu0,Mt0,Xt0,Seas0,Autoregressive0,SpatParam0,VectSubdiag0
Methods : hbstm,hbstm.fit,results,estimation,resid,mse
Plot : plotRes,plotFit
Data: hirlam,coordinates
## See 'tutorial.pdf', included in the documentation of the package, to see a full example
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.