| apca | R Documentation |
APCA function for fitting ANOVA Principal Component Analysis models.
apca(
formula,
data,
add_error = TRUE,
contrasts = "contr.sum",
permute = FALSE,
perm.type = c("approximate", "exact"),
...
)
formula |
Model formula accepting a single response (block) and predictors. |
data |
The data set to analyse. |
add_error |
Add error to LS means (default = TRUE). |
contrasts |
Effect coding: "sum" (default = sum-coding), "weighted", "reference", "treatment". |
permute |
Number of permutations to perform (default = 1000). |
perm.type |
Type of permutation to perform, either "approximate" or "exact" (default = "approximate"). |
... |
Additional parameters for the |
An object of class apca, inheriting from the general asca class.
Further arguments and plots can be found in the asca documentation.
Harrington, P.d.B., Vieira, N.E., Espinoza, J., Nien, J.K., Romero, R., and Yergey, A.L. (2005) Analysis of variance–principal component analysis: A soft tool for proteomic discovery. Analytica chimica acta, 544 (1-2), 118–127.
Main methods: asca, apca, limmpca, msca, pcanova, prc and permanova.
Workhorse function underpinning most methods: hdanova.
Extraction of results and plotting: asca_results, asca_plots, pcanova_results and pcanova_plots
data(candies)
ap <- apca(assessment ~ candy, data=candies)
scoreplot(ap)
# Numeric effects
candies$num <- eff <- 1:165
mod <- apca(assessment ~ candy + assessor + num, data=candies)
summary(mod)
scoreplot(mod, factor=3, gr.col=rgb(eff/max(eff), 1-eff/max(eff),0), pch.scores="x")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.