msca | R Documentation |
This MSCA implementation assumes a single factor to be used as between-individuals factor.
msca(
formula,
data,
contrasts = "contr.sum",
permute = FALSE,
perm.type = c("approximate", "exact"),
...
)
formula |
Model formula accepting a single response (block) and predictors. See Details for more information. |
data |
The data set to analyse. |
contrasts |
Effect coding: "sum" (default = sum-coding), "weighted", "reference", "treatment". |
permute |
Number of permutations to perform (default = 1000). |
perm.type |
Type of permutation to perform, either "approximate" or "exact" (default = "approximate"). |
... |
Additional arguments to |
An asca
object containing loadings, scores, explained variances, etc. The object has
associated plotting (asca_plots
) and result (asca_results
) functions.
Smilde, A., Jansen, J., Hoefsloot, H., Lamers,R., Van Der Greef, J., and Timmerman, M.(2005). ANOVA-Simultaneous Component Analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043–3048.
Liland, K.H., Smilde, A., Marini, F., and Næs,T. (2018). Confidence ellipsoids for ASCA models based on multivariate regression theory. Journal of Chemometrics, 32(e2990), 1–13.
Main methods: asca
, apca
, limmpca
, msca
, pcanova
, prc
and permanova
.
Workhorse function underpinning most methods: hdanova
.
Extraction of results and plotting: asca_results
, asca_plots
, pcanova_results
and pcanova_plots
# Load candies data
data(candies)
# Basic MSCA model with a single factor
mod <- msca(assessment ~ candy, data=candies)
print(mod)
summary(mod)
# Result plotting for first factor
loadingplot(mod, scatter=TRUE, labels="names")
scoreplot(mod)
# Within scores
scoreplot(mod, factor="within")
# Within scores per factor level
par.old <- par(mfrow=c(3,2), mar=c(4,4,2,1), mgp=c(2,0.7,0))
for(i in 1:length(mod$scores.within))
scoreplot(mod, factor="within", within_level=i,
main=paste0("Level: ", names(mod$scores.within)[i]),
panel.first=abline(v=0,h=0,col="gray",lty=2))
par(par.old)
# Permutation testing
mod.perm <- asca(assessment ~ candy * assessor, data=candies, permute=TRUE)
summary(mod.perm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.