| ESAC_test_calibrate | R Documentation | 
\gamma(t) for single change-point testing using Monte Carlo simulationR wrapper for C function choosing the penalty function \gamma(t) by Monte Carlo simulation, as described in Appendix B in \insertCitemoen2023efficient;textualHDCD, for testing for a single change-point.
ESAC_test_calibrate(
  n,
  p,
  bonferroni = TRUE,
  N = 1000,
  tol = 1/1000,
  fast = FALSE,
  rescale_variance = TRUE,
  debug = FALSE
)
| n | Number of observations | 
| p | Number time series | 
| bonferroni | If  | 
| N | Number of Monte Carlo samples used | 
| tol | False positive probability tolerance | 
| fast | If  | 
| rescale_variance | If  | 
| debug | If  | 
A list containing a vector of values of \gamma(t) for t \in \mathcal{T} decreasing (element #1), a vector of corresponding values of the threshold a(t) (element # 3), a vector of corresponding values of \nu_{a(t)}
A list containing
| without_partial |  a vector of values of  | 
| with_partial | same as  | 
| as | vector of threshold values  | 
| nu_as | vector of conditional expectations  | 
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = ESAC_test_calibrate(n,p, bonferroni=TRUE,N=100, tol=1/100)
set.seed(100)
thresholds_emp_without_bonferroni = ESAC_test_calibrate(n,p, bonferroni=FALSE,N=100, tol=1/100)
thresholds_emp[[1]] # vector of \gamma(t) for t = p,...,1
thresholds_emp_without_bonferroni[[1]] # vector of \gamma(t) for t = p,...,1
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = ESAC_test(X, thresholds = thresholds_emp[[1]])
resX
resY = ESAC_test(Y,  thresholds = thresholds_emp[[1]])
resY
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.