Inspect_test_calibrate | R Documentation |
\xi
for single change-point testing using Monte Carlo simulationR wrapper for C function choosing the empirical detection threshold \xi
for Inspect \insertCitewang_high_2018;textualHDCD for single change-point testing using Monte Carlo simulation.
Inspect_test_calibrate(
n,
p,
N = 100,
tol = 1/100,
lambda = NULL,
eps = 1e-10,
maxiter = 10000,
rescale_variance = TRUE,
debug = FALSE
)
n |
Number of observations |
p |
Number time series |
N |
Number of Monte Carlo samples used |
tol |
False positive probability tolerance |
lambda |
Manually specified value of |
eps |
Threshold for declaring numerical convergence of the power method |
maxiter |
Maximum number of iterations for the power method |
rescale_variance |
If |
debug |
If |
A list containing
max_value |
the empirical threshold |
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = Inspect_test_calibrate(n,p,N=100, tol=1/100)
thresholds_emp
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = Inspect_test(X, xi = thresholds_emp$max_value)
resX
resY = Inspect_test(Y, xi = thresholds_emp$max_value)
resY
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.