View source: R/Plot_frontier.R
plot_frontier | R Documentation |
The plotted Bayesian efficient frontier is provided by
\insertCite@Eq. (8) in @bauder21;textualHDShOP.
It is the set of optimal portfolios obtained
by employing the posterior predictive distribution on the asset returns.
This efficient frontier can be used to assess the mean-variance efficiency
of various estimators of the portfolio weights. The standard deviation of
the portfolio return is plotted in the x
-axis and the mean portfolio
return in the y
-axis. The portfolios with the weights \rm{w}
are added to the plot by computing \sqrt{\rm{w}^\prime S w}
and \rm w^\prime \bar x
.
plot_frontier(x, weights.eff = rep(1/nrow(x), length = nrow(x)))
x |
a p by n matrix or a data frame of asset returns. Rows represent different assets, columns – observations. |
weights.eff |
matrix of portfolio weights. Each column contains p values of the weights for a given portfolio. Default: equally weighted portfolio. |
a ggplot object
p <- 150
n <- 300
gamma <- 10
mu <- seq(0.2,-0.2, length.out=p)
Sigma <- RandCovMtrx(p=p)
x <- t(MASS::mvrnorm(n=n , mu=mu, Sigma=Sigma))
EW_port <- rep(1/p, length=p)
MV_shr_port <- new_MV_portfolio_weights_BDOPS21(x=x, gamma=gamma,
b=EW_port, beta=0.05)$weights
GMV_shr_port <- new_MV_portfolio_weights_BDOPS21(x=x, gamma=Inf, b=EW_port,
beta=0.05)$weights
MV_trad_port <- new_MV_portfolio_traditional(x=x, gamma=gamma)$weights
GMV_trad_port <- new_MV_portfolio_traditional(x=x, gamma=Inf)$weights
weights.eff <- cbind(EW_port, MV_shr_port, GMV_shr_port,
MV_trad_port, GMV_trad_port)
colnames(weights.eff) <- c("EW", "MV_shr", "GMV_shr", "MV_trad", "GMV_trad")
Fplot <- plot_frontier(x, weights.eff)
Fplot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.