View source: R/CP_functions_unified.R
| DGP.CP | R Documentation |
DGP.CP() function generates simulated data following the
data generating process described in Section 7.1 of Chang et al. (2024).
DGP.CP(n, p, q, d, d1, d2)
n |
Integer. The number of observations of the |
p |
Integer. The number of rows of |
q |
Integer. The number of columns of |
d |
Integer. The number of columns of the factor loading matrices |
d1 |
Integer. The rank of the |
d2 |
Integer. The rank of the |
We generate
{\bf{Y}}_t = {\bf A \bf X}_t{\bf B}' + {\boldsymbol{\epsilon}}_t
for any t=1, \ldots, n, where {\bf X}_t = {\rm diag}({\bf x}_t)
with {\bf x}_t = (x_{t,1},\ldots,x_{t,d})' being a d \times 1 time series,
{\boldsymbol{\epsilon}}_t is a p \times q matrix white noise,
and {\bf A} and {\bf B} are, respectively, p\times d and
q \times d factor loading matrices. \bf A, {\bf X}_t, and \bf B
are generated based on the data generating process described in Section 7.1 of
Chang et al. (2024) and satisfy {\rm rank}({\bf A})=d_1 and
{\rm rank}({\bf B})=d_2, 1 \le d_1, d_2 \le d.
A list containing the following components:
Y |
An |
A |
The |
B |
The |
X |
An |
Chang, J., Du, Y., Huang, G., & Yao, Q. (2024). Identification and estimation for matrix time series CP-factor models. arXiv preprint. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.48550/arXiv.2410.05634")}.
CP_MTS.
p <- 10
q <- 10
n <- 400
d = d1 = d2 <- 3
data <- DGP.CP(n,p,q,d1,d2,d)
Y <- data$Y
## The first observation: Y_1
Y[1, , ]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.