| WN_test | R Documentation | 
WN_test() implements the test proposed in Chang, Yao and Zhou
(2017) for the following hypothesis testing problem: 
H_0:\{{\bf y}_t
\}_{t=1}^n\mathrm{\ is\ white\ noise\ \ versus\ \ }H_1:\{{\bf y}_t
\}_{t=1}^n\mathrm{\ is\ not\ white\ noise.} 
WN_test(
  Y,
  lag.k = 2,
  B = 1000,
  kernel.type = c("QS", "Par", "Bart"),
  pre = FALSE,
  alpha = 0.05,
  control.PCA = list()
)
| Y | An  | 
| lag.k | The time lag  | 
| B | The number of bootstrap replications for generating multivariate normally distributed random vectors when calculating the critical value. The default is 1000. | 
| kernel.type | The option for choosing the symmetric kernel used
in the estimation of long-run covariance matrix. Available options include:
 | 
| pre | Logical. If  | 
| alpha | The significance level of the test. The default is 0.05. | 
| control.PCA | A list of control arguments passed to the function
 | 
An object of class "hdtstest", which contains the following
components:
| statistic | The test statistic of the test. | 
| p.value | The p-value of the test. | 
| lag.k | The time lag used in function. | 
| kernel.type | The kernel used in function. | 
Chang, J., Guo, B., & Yao, Q. (2018). Principal component analysis for second-order stationary vector time series. The Annals of Statistics, 46, 2094–2124. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.1214/17-AOS1613")}.
Chang, J., Yao, Q., & Zhou, W. (2017). Testing for high-dimensional white noise using maximum cross-correlations. Biometrika, 104, 111–127. \Sexpr[results=rd]{tools:::Rd_expr_doi("doi:10.1093/biomet/asw066")}.
PCA_TS
#Example 1
## Generate xt
n <- 200
p <- 10
Y <- matrix(rnorm(n * p), n, p)
res <- WN_test(Y)
Pvalue <- res$p.value
rej <- res$reject
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.