Nothing
#' @title Cluster data with HMM-VB
#'
#' @description This function clusters dataset with HMM-VB. First, for each data point it finds an optimal state sequence
#' using Viterbi algorithm. Next, it uses Modal Baum-Welch algorithm (MBW) to find the modes
#' of distinct Viterbi state sequences. Data points associated the same modes form clusters.
#' If different data sets are clustered using the same HMM-VB, clustering results of one data set
#' can be supplied as a reference during clustering of another data set to produce aligned clusters.
#' @param data A numeric vector, matrix, or data frame of observations.
#' Categorical values are not allowed. If a matrix or data frame, rows
#' correspond to observations and columns correspond to variables.
#' @param model An object of class 'HMMVB' that contains trained HMM-VB obtained
#' by the call to function \code{hmmvbTrain}.
#' @param control A list of control parameters for clustering. The defaults are set by
#' the call \code{clustControl()}.
#' @param rfsClust A list of parameters for the reference cluster that can be used
#' for alignment. See \code{HMMVBclust}
#' for details.
#' @param nthread An integer specifying the number of threads used in clustering.
#' @param bicObj An object of class 'HMMVBBIC' which stores results of model selection.
#' If provided, argument \code{model} is ignored.
#' @return An object of class 'HMMVBclust'.
#' @seealso \code{\link{HMMVB-class}}, \code{\link{HMMVBclust-class}}, \code{\link{hmmvbTrain}}
#' @examples
#' # cluster using trained HMM-VB
#' Vb <- vb(1, dim=4, numst=2)
#' set.seed(12345)
#' hmmvb <- hmmvbTrain(iris[,1:4], VbStructure=Vb)
#' clust <- hmmvbClust(iris[,1:4], model=hmmvb)
#' show(clust)
#' pairs(iris[,1:4], col=getClsid(clust))
#'
#' \donttest{
#' # cluster using HMMVBBIC object obtained in model selection
#' Vb <- vb(1, dim=4, numst=1)
#' set.seed(12345)
#' modelBIC <- hmmvbBIC(iris[,1:4], VbStructure=Vb)
#' clust <- hmmvbClust(iris[,1:4], bicObj=modelBIC)
#' show(clust)
#' pairs(iris[,1:4], col=getClsid(clust))}
hmmvbClust <- function(data, model=NULL, control=clustControl(), rfsClust=NULL, nthread=1, bicObj=NULL){
data = as.matrix(data)
nthread = as.integer(nthread)
if ((length(nthread) != 1) || nthread < 1)
stop('nthread should be a positive integer >= 1!\n')
if (!is.null(bicObj) && (!isS4(bicObj) || !is(bicObj, "HMMVBBIC")))
stop('If provided, bicObj should be an instance of class HMMVBBIC!\n')
if (!is.null(bicObj)){
res <- rcpp_clust(t(data), getOptHMMVB(bicObj), rfsClust, control, nthread)
} else{
if (is.null(model) || !isS4(model) || !is(model, "HMMVB"))
stop('If argument bicObj is not provided, model argument should be given and it must be an instance of class HMMVB!\n')
res <- rcpp_clust(t(data), model, rfsClust, control, nthread)
}
res@data <- data
res@clsid = res@clsid + 1
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.