View source: R/hima_microbiome.R
hima_microbiome | R Documentation |
hima_microbiome
is used to estimate and test high-dimensional mediation effects for compositional microbiome data.
hima_microbiome(X, OTU, Y, COV = NULL, FDRcut = 0.05, verbose = FALSE)
X |
a vector of exposure. Do not use |
OTU |
a |
Y |
a vector of continuous outcome. Binary outcome is not allowed. Do not use |
COV |
a |
FDRcut |
Hommel FDR cutoff applied to select significant mediators. Default = |
verbose |
logical. Should the function be verbose? Default = |
A data.frame containing mediation testing results of significant mediators (FDR <FDRcut
).
mediation name of selected significant mediator.
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
standard error for alpha.
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
standard error for beta.
mediation (indirect) effect, i.e., alpha*beta.
relative importance of the mediator.
joint raw p-value of selected significant mediator (based on Hommel FDR method).
1. Zhang H, Chen J, Feng Y, Wang C, Li H, Liu L. Mediation effect selection in high-dimensional and compositional microbiome data. Stat Med. 2021. DOI: 10.1002/sim.8808. PMID: 33205470; PMCID: PMC7855955
2. Zhang H, Chen J, Li Z, Liu L. Testing for mediation effect with application to human microbiome data. Stat Biosci. 2021. DOI: 10.1007/s12561-019-09253-3. PMID: 34093887; PMCID: PMC8177450
## Not run:
# Note: In the following example, M1, M2, and M3 are true mediators.
head(MicrobiomeData$PhenoData)
hima_microbiome.fit <- hima_microbiome(
X = MicrobiomeData$PhenoData$Treatment,
Y = MicrobiomeData$PhenoData$Outcome,
OTU = MicrobiomeData$Mediator,
COV = MicrobiomeData$PhenoData[, c("Sex", "Age")],
FDRcut = 0.05,
verbose = TRUE
)
hima_microbiome.fit
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.