View source: R/hima_survival_long.R
| hima_survival_long | R Documentation |
hima_survival_long estimates and tests high-dimensional longitudinal mediation effects for survival data in a counting
process framework.
hima_survival_long(
X,
M,
tstart,
tstop,
status,
id,
COV = NULL,
topN = NULL,
scale = TRUE,
Bonfcut = 0.05,
verbose = FALSE,
parallel = FALSE,
ncore = 1
)
X |
A numeric vector of exposure values (do not use |
M |
A |
tstart |
A numeric vector of starting times for each observation/interval (e.g., entry time in a counting-process setup). |
tstop |
A numeric vector of stopping times for each observation/interval (e.g., event/censoring time in a counting-process setup). |
status |
A numeric vector of censoring indicators ( |
id |
A vector of subject identifiers (used for clustering/random effects). |
COV |
A |
topN |
Integer specifying the number of top mediators retained after sure independent screening (SIS). If |
scale |
Logical. Should the function scale the exposure, mediators, and covariates? Default = |
Bonfcut |
Bonferroni-corrected p value cutoff applied to select significant mediators. Default = |
verbose |
Logical. Should progress messages be printed? Default = |
parallel |
Logical. Enable parallel computing for SIS? Default = |
ncore |
Integer specifying the number of cores to use when |
A data.frame containing mediation testing results of significant mediators (joint p-value < Bonfcut).
Mediator name of the selected significant mediator.
Coefficient estimates for the exposure (X) –> mediator (M) model (adjusted for covariates).
Standard error for alpha_hat.
Coefficient estimates for the mediator (M) –> outcome (Y) model (adjusted for covariates and exposure).
Standard error for beta_hat.
Indirect (mediation) effect estimate, i.e., alpha_hat * beta_hat.
Relative importance of the mediator.
joint raw p-value of selected significant mediator (based on Bonferroni method).
Liu L, Zhang H, Zheng Y, Gao T, Zheng C, Zhang K, Hou L, Liu L. High-dimensional mediation analysis for longitudinal mediators and survival outcomes. Briefings in Bioinformatics. 2025. DOI: 10.1093/bib/bbaf206. PMID: 40350699 PMCID: PMC12066418
## Not run:
data(SurvivalLongData)
pheno_data <- SurvivalLongData$PhenoData
mediator_data <- SurvivalLongData$Mediator
hima_survival_long.fit <- hima_survival_long(
X = pheno_data$Treatment,
M = mediator_data,
tstart = pheno_data$Tstart,
tstop = pheno_data$Tstop,
status = pheno_data$Status,
id = pheno_data$ID,
COV = pheno_data[, c("Sex", "Age")],
verbose = TRUE
)
hima_survival_long.fit
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.