Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE,
echo = TRUE # Ensures all code is displayed by default
)
library(HIMA)
## ----hima-interface-----------------------------------------------------------
# hima(
# formula, # The model formula specifying outcome, exposure, and covariate(s)
# data.pheno, # Data frame with outcome, exposure, and covariate(s)
# data.M, # Data frame or matrix of high-dimensional mediators
# mediator.type, # Type of mediators: "gaussian", "negbin", or "compositional"
# penalty = "DBlasso", # Penalty method: "DBlasso", "MCP", "SCAD", or "lasso"
# quantile = FALSE, # Use quantile mediation analysis (default: FALSE)
# efficient = FALSE,# Use efficient mediation analysis (default: FALSE)
# scale = TRUE, # Scale data (default: TRUE)
# sigcut = 0.05, # Significance cutoff for mediator selection
# contrast = NULL, # Named list of contrasts for factor covariate(s)
# subset = NULL, # Optional subset of observations
# verbose = FALSE # Display progress messages (default: FALSE)
# )
## ----load-HIMA----------------------------------------------------------------
# library(HIMA)
## ----continuous-example-------------------------------------------------------
# data(ContinuousOutcome)
# hima_continuous.fit <- hima(
# Outcome ~ Treatment + Sex + Age,
# data.pheno = ContinuousOutcome$PhenoData,
# data.M = ContinuousOutcome$Mediator,
# mediator.type = "gaussian",
# penalty = "MCP",
# scale = FALSE # Demo data is already standardized
# )
# summary(hima_continuous.fit, desc=TRUE)
# # `desc = TRUE` option to show the description of the output results
## ----efficient-example--------------------------------------------------------
# hima_efficient.fit <- hima(
# Outcome ~ Treatment + Sex + Age,
# data.pheno = ContinuousOutcome$PhenoData,
# data.M = ContinuousOutcome$Mediator,
# mediator.type = "gaussian",
# efficient = TRUE,
# penalty = "lasso",
# scale = FALSE # Demo data is already standardized
# )
# summary(hima_efficient.fit, desc=TRUE)
# # Note that the efficient HIMA is controlling FDR
## ----binary-example-----------------------------------------------------------
# data(BinaryOutcome)
# hima_binary.fit <- hima(
# Disease ~ Treatment + Sex + Age,
# data.pheno = BinaryOutcome$PhenoData,
# data.M = BinaryOutcome$Mediator,
# mediator.type = "gaussian",
# penalty = "MCP",
# scale = FALSE # Demo data is already standardized
# )
# summary(hima_binary.fit)
## ----survival-example---------------------------------------------------------
# data(SurvivalData)
# hima_survival.fit <- hima(
# Surv(Time, Status) ~ Treatment + Sex + Age,
# data.pheno = SurvivalData$PhenoData,
# data.M = SurvivalData$Mediator,
# mediator.type = "gaussian",
# penalty = "DBlasso",
# scale = FALSE # Demo data is already standardized
# )
# summary(hima_survival.fit)
## ----microbiome-example-------------------------------------------------------
# data(MicrobiomeData)
# hima_microbiome.fit <- hima(
# Outcome ~ Treatment + Sex + Age,
# data.pheno = MicrobiomeData$PhenoData,
# data.M = MicrobiomeData$Mediator,
# mediator.type = "compositional",
# penalty = "DBlasso"
# )
# summary(hima_microbiome.fit)
## ----quantile-example---------------------------------------------------------
# data(QuantileData)
# hima_quantile.fit <- hima(
# Outcome ~ Treatment + Sex + Age,
# data.pheno = QuantileData$PhenoData,
# data.M = QuantileData$Mediator,
# mediator.type = "gaussian",
# quantile = TRUE,
# penalty = "MCP",
# tau = c(0.3, 0.5, 0.7),
# scale = FALSE # Demo data is already standardized
# )
# summary(hima_quantile.fit)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.