Description Usage Arguments Details Value References See Also Examples
Generalized Two-Staged Model-Based estmation
1 | gtsmb(y_S, X_S, X_Sa, Z_Sa, Z_U, Omega_S, Phis_Sa)
|
y_S |
Response object that can be coersed into a column vector. The
|
X_S |
Object of predictors variables that can be coersed into a matrix.
The rows of |
X_Sa |
Object of predictor variables that can be coresed into a matrix. The set Sa is the intermediate sample. |
Z_Sa |
Object of predictor variables that can be coresed into a matrix.
The set Sa is the intermediate sample, and the Z-variables often some
sort of auxilairy, inexpensive data. The rows of |
Z_U |
Object of predictor variables that can be coresed into a matrix. The set U is the universal population sample. |
Omega_S |
The covariance structure of ε_S, up to a constant. |
Phis_Sa |
A 3D array, where the third dimension corresponds to the covariance structure of E(ξ_k,Sa ξ_j,Sa'), in the order k=1,...,p, j=1,...,k. For p = 3, the order (k,j) will thus be (1,1), (2,1), (2,2), (3,1), (3,2), (3,3). |
The GTSMB assumes the superpopulations
y = x β + ε
x_k = z γ_k + ξ_k
ε indep. ξ_k
For a sample from the superpopulation, the GTSMB assumes
E(ε) = 0, E(ε ε') = ω^2 Ω
E(ξ_k) = 0, E(ξ_k ξ_j') = θ_Phi,k,j Φ_k,j, θ_Phi,k,j Φ_k,j = θ_Phi,j,k Φ_j,k
A fitted object of class HMB.
Holm, S., Nelson, R. & Ståhl, G. (2017) Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar. Remote Sensing of Environment, 197, 85–97.
Saarela, S., Holm, S., Healey, S.P., Andersen, H.-E., Petersson, H., Prentius, W., Patterson, P.L., Næsset, E., Gregoire, T.G. & Ståhl, G. (2018). Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data, Remote Sensing, 10(11), 1832.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 500)
pop_S = sample(pop_U, 100)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
Omega_S = diag(1, nrow(X_S))
Phis_Sa = array(0, c(nrow(X_Sa), nrow(X_Sa), ncol(X_Sa) * (ncol(X_Sa) + 1) / 2))
Phis_Sa[, , 1] = diag(1, nrow(X_Sa)) # Phi(1,1)
Phis_Sa[, , 2] = diag(1, nrow(X_Sa)) # Phi(2,1)
Phis_Sa[, , 3] = diag(1, nrow(X_Sa)) # Phi(2,2)
Phis_Sa[, , 4] = diag(1, nrow(X_Sa)) # Phi(3,1)
Phis_Sa[, , 5] = diag(1, nrow(X_Sa)) # Phi(3,2)
Phis_Sa[, , 6] = diag(1, nrow(X_Sa)) # Phi(3,3)
gtsmb_model = gtsmb(y_S, X_S, X_Sa, Z_Sa, Z_U, Omega_S, Phis_Sa)
gtsmb_model
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.