pgenpois | R Documentation |
Distribution function for the generalized Poisson distribution.
pgenpois(q, lambda1, lambda2)
q |
a numeric vector of quantiles |
lambda1 |
a single numeric value for parameter |
lambda2 |
a single numeric value for parameter |
The generalized Poisson distribution has the density
p(x) = \lambda_1 (\lambda_1 + \lambda_2 \cdot x)^{x-1}
\frac{ \exp(-\lambda_1-\lambda_2 \cdot x) )}{x!}
for x = 0,1,2,\ldots
,b
with \mbox{E}(X)=
\frac{\lambda_1}{1-\lambda_2}
and variance
\mbox{var}(X)=\frac{\lambda_1}{(1-\lambda_2)^3}
.
pgenpois
gives the distribution function of the generalized Poisson distribution.
Based on Joe and Zhu (2005). Implementation by Vitali Witowski (2013).
Joe, H., Zhu, R. (2005). Generalized poisson distribution: the property of mixture of poisson and comparison with negative binomial distribution. Biometrical Journal 47(2):219–229.
pgenpois
, rgenpois
;
Distributions for other standard distributions,
including dpois
for the Poisson distribution.
dgenpois(x = seq(0,20), lambda1 = 10, lambda2 = 0.5)
pgenpois(q = 5, lambda1 = 10, lambda2 = 0.5)
hist(rgenpois(n = 1000, lambda1 = 10, lambda2 = 0.5) )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.