rgenpois: The Generalized Poisson Distribution

View source: R/rgenpois.R

rgenpoisR Documentation

The Generalized Poisson Distribution

Description

Density, distribution function and random generation function for the generalized Poisson distribution.

Usage

rgenpois(n, lambda1, lambda2)

Arguments

n

number of observations

lambda1

a single numeric value for parameter lambda1 with lambda1 > 0

lambda2

a single numeric value for parameter lambda2 with 0 \le lamdba2 < 1. When lambda2=0, the generalized Poisson distribution reduces to the Poisson distribution

Details

The generalized Poisson distribution has the density

p(x) = \lambda_1 (\lambda_1 + \lambda_2 \cdot x)^{x-1} \frac{ \exp(-\lambda_1-\lambda_2 \cdot x) )}{x!}

for x = 0,1,2,\ldots,b with \mbox{E}(X)= \frac{\lambda_1}{1-\lambda_2} and variance \mbox{var}(X)=\frac{\lambda_1}{(1-\lambda_2)^3}.

Value

rgenpois generates random deviates of the generalized Poisson distribution.

Author(s)

Based on Joe and Zhu (2005). Implementation by Vitali Witowski (2013).

References

Joe, H., Zhu, R. (2005). Generalized poisson distribution: the property of mixture of poisson and comparison with negative binomial distribution. Biometrical Journal 47(2):219–229.

See Also

pgenpois, dgenpois; Distributions for other standard distributions, including dpois for the Poisson distribution.

Examples

dgenpois(x = seq(0,20), lambda1 = 10, lambda2 = 0.5) 
pgenpois(q = 5, lambda1 = 10, lambda2 = 0.5) 
hist(rgenpois(n = 1000, lambda1 = 10, lambda2 = 0.5) )

HMMpa documentation built on April 3, 2025, 10:29 p.m.