Nothing
bayesHRT <- function(a, prior = NULL) {
# Check if the dataset `a` contains values for the prior of each cell
if (is.null(prior)) {
if ("prior" %in% colnames(a)) {
prior <- 1 - a$prior # This is cell-level prior probability for regular cases!!!
} else {
# Use non informative prior if the dataset `a` does not contain prior probabilities for each cell
prior <- 0.5 # This is cell-level prior probability for regular cases!!!
}
} else {
prior <- 1 - prior # This is cell-level prior probability for regular cases!!!
}
## Historical residual and zero check
hRes <- .C("history_res", double(nrow(a)), double(nrow(a)),
as.double(a$current_value_num),
as.double(a$pred_value), nrow(a),
NAOK = TRUE, DUP = TRUE, PACKAGE = "HRTnomaly")[1L:2L]
zScore <- hRes[[2L]] * prior # Used as priors for each cell
hRes <- hRes[[1L]]
dtah <- cbind.data.frame(a[, c("strata", "unit_id", "master_varname")], hRes, zScore)
dtaz <- dtah[, -4L] %>% pivot_wider(names_from = any_of("master_varname"), values_from = matches("zScore"))
dtah <- dtah[, -5L] %>% pivot_wider(names_from = any_of("master_varname"), values_from = matches("hRes"))
dtah[, -1L:-2L][is.na(dtah[, -1L:-2L])] <- 0
## Tail-check
dtac <- a[, c("strata", "unit_id", "master_varname", "current_value_num")] %>%
pivot_wider(names_from = any_of("master_varname"), values_from = matches("current_value_num"))
dtac[dtac <= 0] <- NA
dtal <- as.matrix(log(dtac[, -1L:-2L]))
gr <- factor(dtac$strata)
tRes <- .C("tail_res", as.double(dtal), dim(dtal),
gr, nlevels(gr), res = double(prod(dim(dtal))),
NAOK = TRUE, PACKAGE = "HRTnomaly")$res
tRes <- array(tRes, dim = dim(dtal))
tRes[is.na(tRes)] <- 0
## Relational-check
rRes <- 0
dtae <- tRes
rRes <- .C("relat_res", dtae = as.double(dtae),
dim(dtal), PACKAGE = "HRTnomaly")$dtae
rRes <- array(rRes, dim = dim(dtal))
## Putting things together using the highest posterior probability class
pr_mat <- as.matrix(dtaz[, -1L:-2L])
hRes <- as.matrix(dtah[, -1L:-2L])
finals <- .C("post_results", as.double(pr_mat), integer(prod(dim(dtal))),
dim(dtal), as.double(hRes), as.double(rRes), as.double(tRes),
NAOK = TRUE, PACKAGE = "HRTnomaly")[1L:2L]
pr_mat <- array(finals[[1L]], dim = dim(dtal)) # Outlier posterior probability!!!
finals <- array(as.logical(finals[[2L]]), dim = dim(dtal)) # Outlier flag (if TRUE then outlier)
## Putting things together using a Fuzzy-Logic-Inspired procedure
dtac[, -1L:-2L] <- array(pr_mat, dim = dim(dtal))
# dtar <- dtac %>% pivot_longer(2 + seq_len(ncol(dtal)), values_drop_na = TRUE)
dtar <- dtac %>% pivot_longer(cols = 3:dim(dtac)[2],
names_to = "master_varname",
values_to = "post_prob")
a <- left_join(a, dtar)
dtac[, -1L:-2L] <- finals
dtar <- dtac %>% pivot_longer(cols = 3:dim(dtac)[2],
names_to = "master_varname",
values_to = "outlier")
a <- left_join(a, dtar)
return(a)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.