Nothing
#' @name plotNovelCells
#' @title Plot the identified outlier cells in the voronoi tessellation map.
#' @description This is the main plotting function to construct hierarchical voronoi tessellations
#' and highlight the outlier cells
#' @param plot.cells Vector. A vector indicating the cells to be highlighted in the map
#' @param hvt.map List. A list containing the output of \code{trainHVT} function
#' which has the details of the tessellations to be plotted
#' @param line.width Numeric Vector. A vector indicating the line widths of the
#' tessellation boundaries for each level
#' @param color.vec Vector. A vector indicating the colors of the boundaries of
#' the tessellations at each level
#' @param pch Numeric. Symbol of the centroids of the tessellations
#' (parent levels) Default value is 21.
#' @param centroid.size Numeric. Size of centroids of first level
#' tessellations. Default value is 0.5
#' @param title String. Set a title for the plot. (default = NULL)
#' @param maxDepth Numeric. An integer indicating the number of levels. (default = NULL)
#' @returns Returns a ggplot object containing hierarchical voronoi tessellation plot
#' highlighting the outlier cells
#' @author Shantanu Vaidya <shantanu.vaidya@@mu-sigma.com>
#' @seealso \code{\link{trainHVT}} \cr \code{\link{plotHVT}}
#' @keywords Novelty_or_Outliers
#' @importFrom magrittr %>%
#' @import ggplot2
#' @examples
#' data("EuStockMarkets")
#' hvt.results <- trainHVT(EuStockMarkets, n_cells = 60, depth = 1, quant.err = 0.1,
#' distance_metric = "L1_Norm", error_metric = "max",
#' normalize = TRUE,quant_method="kmeans")
#' #selected 55,58 are for demo purpose
#' plotNovelCells(c(55,58),hvt.results)
#' @export plotNovelCells
plotNovelCells <-
function(plot.cells,
hvt.map,
line.width = c(0.6),
color.vec = c("#141B41"),
pch = 21,
centroid.size = 0.5,
title = NULL,
maxDepth = 1) {
hvt_list <- hvt.map
outlier_cell_k <- plot.cells
maxDepth <- min(maxDepth, max(hvt_list[[3]][["summary"]] %>% stats::na.omit() %>% dplyr::select("Segment.Level")))
min_x <- 1e9
min_y <- 1e9
max_x <- -1e9
max_y <- -1e9
depthVal <- c()
clusterVal <- c()
childVal <- c()
value <- c()
x_pos <- c()
y_pos <- c()
x_cor <- c()
y_cor <- c()
depthPos <- c()
clusterPos <- c()
childPos <- c()
levelCluster <- c()
for (clusterNo in 1:length(hvt_list[[2]][[1]][[1]])) {
bp_x <- hvt_list[[2]][[1]][[1]][[clusterNo]][["x"]]
bp_y <- hvt_list[[2]][[1]][[1]][[clusterNo]][["y"]]
if (min(bp_x) < min_x) {
min_x <- min(bp_x)
}
if (max(bp_x) > max_x) {
max_x <- max(bp_x)
}
if (min(bp_y) < min_y) {
min_y <- min(bp_y)
}
if (max(bp_y) > max_y) {
max_y <- max(bp_y)
}
}
for (depth in 1:maxDepth) {
for (clusterNo in 1:length(hvt_list[[2]][[depth]])) {
for (childNo in 1:length(hvt_list[[2]][[depth]][[clusterNo]])) {
current_cluster <- hvt_list[[2]][[depth]][[clusterNo]][[childNo]]
x <- as.numeric(current_cluster[["x"]])
y <- as.numeric(current_cluster[["y"]])
x_cor <- c(x_cor, as.numeric(current_cluster[["pt"]][["x"]]))
y_cor <- c(y_cor, as.numeric(current_cluster[["pt"]][["y"]]))
depthVal <- c(depthVal, depth)
clusterVal <- c(clusterVal, clusterNo)
childVal <- c(childVal, childNo)
depthPos <- c(depthPos, rep(depth, length(x)))
clusterPos <- c(clusterPos, rep(clusterNo, length(x)))
childPos <- c(childPos, rep(childNo, length(x)))
x_pos <- c(x_pos, x)
y_pos <- c(y_pos, y)
levelCluster <- c(levelCluster, depth)
}
}
}
# outlier_cell_k = c(53)
valuesDataframe <- data.frame(
depth = depthVal,
cluster = clusterVal,
child = childVal
)
valuesDataframe <- valuesDataframe %>%
dplyr::mutate(outlier_cell = ifelse((child %in% outlier_cell_k),
"Outlier_Cell", ""
))
positionsDataframe <- data.frame(
depth = depthPos,
cluster = clusterPos,
child = childPos,
x = x_pos,
y = y_pos
)
centroidDataframe <-
data.frame(x = x_cor, y = y_cor, lev = levelCluster)
datapoly <-
merge(valuesDataframe,
positionsDataframe,
by = c("depth", "cluster", "child")
)
datapoly_outlier_cell <- datapoly[which(datapoly$outlier_cell == "Outlier_Cell"), ]
datapoly_non_outlier_cell <- datapoly[which(datapoly$outlier_cell != "Outlier_Cell"), ]
p <- ggplot2::ggplot()
for (i in maxDepth:1) {
p <-
p + ggplot2::geom_polygon(
data = datapoly_outlier_cell[which(datapoly_outlier_cell$depth == i), ],
ggplot2::aes(
x = x,
y = y,
color = factor(depth),
size = factor(depth),
group = interaction(depth, cluster, child),
),
fill = "red"
) +
ggplot2::geom_polygon(
data = datapoly_non_outlier_cell[which(datapoly_non_outlier_cell$depth == i), ],
ggplot2::aes(
x = x,
y = y,
color = factor(depth),
size = factor(depth),
group = interaction(depth, cluster, child),
),
fill = NA
) +
ggplot2::scale_colour_manual(values = color.vec) +
ggplot2::scale_size_manual(values = line.width, guide = "none") +
ggplot2::labs(color = "Level") +
ggplot2::ggtitle(title)
}
for (depth in 1:maxDepth) {
p <- p + ggplot2::geom_point(
data = centroidDataframe[centroidDataframe["lev"] == depth, ],
ggplot2::aes(x = x, y = y),
size = (centroid.size / (2^(depth - 1))),
pch = 21,
fill = color.vec[depth],
color = color.vec[depth]
) +
ggplot2::geom_point(
data = centroidDataframe[centroidDataframe["lev"] == depth, ],
ggplot2::aes(x = x, y = y),
size = (centroid.size / (2^(depth - 1))),
pch = 21,
fill = color.vec[depth],
color = color.vec[depth]
)
}
p <- p +
ggplot2::scale_color_manual(
name = "Outlier Cell",
values = color.vec
) +
ggplot2::theme_bw() + ggplot2::theme(
plot.background = ggplot2::element_blank(),
plot.title = element_text(
size = 20,
hjust = 0.5,
margin = margin(0, 0, 20, 0)
),
panel.grid = ggplot2::element_blank(),
panel.border = ggplot2::element_blank(),
axis.ticks = element_blank(),
axis.text = element_blank(),
axis.title = element_blank(),
panel.background = element_blank()
) + ggplot2::theme(plot.title = element_text(hjust = 0.5)) +
ggplot2::scale_x_continuous(expand = c(0, 0)) +
ggplot2::scale_y_continuous(expand = c(0, 0)) +
ggplot2::geom_label(
label = centroidDataframe$outlier_cell,
nudge_x = 0.45, nudge_y = 0.1,
check_overlap = TRUE,
label.padding = unit(0.55, "lines"),
label.size = 0.4,
color = "white",
fill = "#038225"
) +
theme(legend.position = "none")
return(suppressMessages(p))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.