knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
Load libraries that will be used.
library(polynom) library(HomomorphicEncryption)
Set a working seed for random numbers (so that random numbers can be replicated exactly).
set.seed(123)
Set some parameters.
M <- 8 N <- M / 2 scale <- 200 xi <- complex(real = cos(2 * pi / M), imaginary = sin(2 * pi / M))
Create the (complex) numbers we will encode.
z <- c(complex(real=3, imaginary=4), complex(real=2, imaginary=-1)) print(z)
Now we encode the vector of complex numbers to a polynomial.
pi_z <- pi_inverse(z) scaled_pi_z <- scale * pi_z rounded_scale_pi_zi <- sigma_R_discretization(xi, M, scaled_pi_z) m <- sigma_inverse(xi, M, rounded_scale_pi_zi) coef <- as.vector(round(Re(m))) m <- polynomial(coef)
Let's view the result.
print(m)
Set some parameters:
n = 16 p = 7 q = 874 pm = polynomial( coef=c(1, rep(0, n-1), 1 ) )
Create the secret key and the polynomials a and e, which will go into the public key:
# generate a secret key s = polynomial( sample.int(3, n, replace=TRUE)-2 ) # generate a a = polynomial(sample.int(q, n, replace=TRUE)) # generate the error e = polynomial( coef=round(stats::rnorm(n, 0, n/3)) )
Generate the public key:
pk0 = CoefMod(-(a*s +e)%%pm,q) pk1 = a
Create polynomials for the encryption:
# polynomials for encryption e1 = polynomial( coef=round(stats::rnorm(n, 0, n/3)) ) e2 = polynomial( coef=round(stats::rnorm(n, 0, n/3)) ) u = polynomial( coef=sample.int(3, (n-1), replace=TRUE)-2 )
Generate the ciphertext (encryption):
ct0 = CoefMod((pk0*u + e1 + m) %% pm, q) ct1 = CoefMod((pk1*u + e2 ) %% pm, q)
Decrypt:
decrypt <- (ct1 * s) + ct0 decrypt <- decrypt %% pm decrypt <- CoefMod(decrypt, q) print(decrypt[1:length(coef(m))])
Let's decode to obtain the original numbers:
rescaled_p <- decrypt[1:length(m)] / scale z <- sigma_function(xi, M, rescaled_p) decoded_z <- pi_function(M, z) print(decoded_z)
The decoded z is indeed very close to the original z, we round the result to make the clearer.
round(decoded_z)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.