Nothing
#' Density, Function of Temperature and Pressure
#'
#' @description The function \code{DTp(Temp,p,digits=9)} returns the water density, D [ kg m-3 ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Density: D [ kg m-3 ] and an Error Message (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' D <- DTp(Temp,p)
#' D
#'
#' @export
#'
DTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('DTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Helmholtz Free Energy, Function of Temperature and Pressure
#'
#' @description The function \code{fTp(Temp,p,digits=9)} returns the Helmholtz Free Energy, f [ kJ kg-1 ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Helmholtz Free Energy: f [ kJ kg-1 ] and an Error Message
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' f <- fTp(Temp,p)
#' f
#'
#' @export
#'
fTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('fTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Specific Enthalpy, Function of Temperature and Pressure
#'
#' @description The function \code{hTp(Temp,p,digits=9)} returns the Specific Enthalpy, h [ kJ kg-1 ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Specific Enthalpy: h [ kJ kg-1 ] and an Error Message
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' h <- hTp(Temp,p)
#' h
#'
#' @export
#'
hTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('hTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Specific Entropy, Function of Temperature and Pressure
#'
#' @description The function \code{sTp(Temp,p,digits=9)} returns the Specific Entropy, h [ kJ kg-1 K-1 ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Specific Entropy: s [ kJ kg-1 K-1] and an Error message
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' s <- sTp(Temp,p)
#' s
#'
#' @export
#'
sTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('sTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Specific Internal Energy, Function of Temperature and Pressure
#'
#' @description The function \code{uTp(Temp,p,digits=9)} returns the Specific Internal Energy, h [ kJ kg-1 ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Specific Internal Energy: u [ kJ kg-1 ] and an Error message
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' u <- uTp(Temp,p)
#' u
#'
#' @export
#'
uTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('uTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Specific Isochoric Heat Capacity, Function of Temperature and Pressure
#'
#' @description The function \code{CvTp(Temp,p,digits=9)} returns the Specific Isochoric Heat Capacity,
#' Cv [ kJ kg-1 K-1 ], for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Specific Isochoric Heat Capacity: Cv [ kJ kg-1 K-1 ] and an Error Message
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' Cv <- CvTp(Temp,p)
#' Cv
#'
#' @export
#'
CvTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('CvTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Specific Isobaric Heat Capacity, Function of Temperature and Pressure
#'
#' @description The function \code{CpTp(Temp,p,digits=9)} returns the Specific Isobaric Heat Capacity,
#' Cp [ kJ kg-1 K-1 ], for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Specific Isobaric Heat Capacity: Cp [ kJ kg-1 K-1 ] and an
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' Cp <- CpTp(Temp,p)
#' Cp
#'
#' @export
#'
CpTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('CpTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Speed of Sound, Function of Temperature and Pressure
#'
#' @description The function \code{wTp(Temp,p,digits=9)} returns the Speed of Sound, [ m s-1 ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Speed of Sound: w [ m s-1 ] and an
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' w <- wTp(Temp,p)
#' w
#'
#' @export
#'
wTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('wTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Specific Gibbs Energy, Function of Temperature and Pressure
#'
#' @description The function \code{GibbsTp(Temp,p,digits=9)} returns the Specific Gibbs Energy, [ MPa ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Specific Gibbs Energy: Gibbs [ MPa ] and an
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' Gibbs <- GibbsTp(Temp,p)
#' Gibbs
#'
#' @export
#'
GibbsTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('GibbsTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Fugacity, Function of Temperature and Pressure
#'
#' @description The function \code{FugaTp(Temp,p,digits=9)} returns the Fugacity, [ MPa ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Fugacity: Fuga [ MPa ] and an
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' Fuga <- FugaTp(Temp,p)
#' Fuga
#'
#' @export
#'
FugaTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('FugaTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
#' Specific Volume, Function of Temperature and Pressure
#'
#' @description The function \code{vTp(Temp,p,digits=9)} returns the Specific Volume, [ m3 kg-1 ],
#' for given Temp [K] and D [kg/m3].
#'
#' @details This function calls a Fortran DLL that solves the Helmholtz Energy Equation.
#' in accordance with the Revised Release on the IAPWS Formulation 1995 for the
#' Thermodynamic Properties of Ordinary Water Substance for General and Scientific
#' Use (June 2014) developed by the International Association for the Properties of
#' Water and Steam, \url{http://www.iapws.org/relguide/IAPWS-95.html}. It is valid
#' from the triple point to the pressure of 1000 MPa and temperature of 1273.
#'
#' @param Temp Temperature [ K ]
#' @param p Pressure [ MPa ]
#' @param digits Digits of results (optional)
#'
#' @return The Specifiv Volume: v [ m3 kg-1 ] and an
#' (if an error occur: \link{errorCodes})
#'
#' @examples
#' Temp <- 500.
#' p <- 10.0003858
#' v <- vTp(Temp,p)
#' v
#'
#' @export
#'
vTp <- function(Temp,p,digits=9) {
y <- 0.
icode <- 0
res <- .Fortran('vTp', as.double(Temp), as.double(p), as.double(y), as.integer(icode))
if (res[[4]] != 0) {
error <- as.character(errorCodes[which(errorCodes[,1]==res[[4]]),2])
warning(error)
}
return(round(res[[3]],digits = digits))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.